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Abstract

Stochastic computing (SC) is an emerging paradigm for designing

circuits to perform complicated computation with simple circuitry.

Although SC circuits have small area and critical-path delay, due

to the need of many clock cycles to perform computation, they

have a large overall latency and energy consumption. One solution

to this problem is to further minimize the circuits. In this work,

we explore target function approximation to derive an SC circuit

with significantly reduced area and delay. We propose two static

methods that first construct a set of functions close to the given

target function and then select the best synthesized SC circuit real-

izing one of these functions. We also propose an efficient dynamic

method that simultaneously searches for the best approximated

target function and the corresponding minimized SC circuit. The

experimental results show that on average, our dynamic method

dramatically reduces the area, critical-path delay, and area-delay

product of the SC circuits by 80%, 59%, and 91%, respectively, over

the state-of-the-art Maclaurin polynomial-based method for a given

error bound of 2%. The code of our methods is made open-source.

Keywords
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1 Introduction

Stochastic computing (SC) is an unconventional computing para-

digm [2]. Unlike binary computing, SC operates on stochastic bit

streams and uses the probability of 1s in a bit stream to represent

a value. It can realize complicated computations with simple cir-

cuitry. For example, it can realize multiplication with a single AND

gate. Thus, SC has great potential to realize applications with much
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smaller circuit area. Applications where SC has been found success-

ful include image processing [1, 8] and neural networks [4, 14, 16].

However, in order to achieve a high precision, stochastic bit

streams should be long enough. Since SC uses one clock cycle

to process each bit, the number of clock cycles needed is large.

For an SC circuit, the latency and energy consumption for each

computation are evaluated as the clock period times the number of

clock cycles and the average power consumption times the latency,

respectively. Consequently, SC has long computation latency and

large energy consumption. One solution to this problem is to further

minimize the SC circuit. Since the clock period is determined by the

critical-path delay (hereafter referred to as delay) of the SC circuit,

minimizing the SC circuit will reduce its delay and hence, the clock

period. It also leads to the reduction of the total area of the SC

circuit. Since the power consumption is roughly proportional to

the area, reduction of the area further leads to the reduction of the

average power consumption. In this case, both the computation

latency and energy consumption can be reduced.
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Figure 1: Implementing target function cos(𝑥) : (a) the closest

degree-6 polynomial approximation by [13]; (b) an SC circuit realiz-

ing another approximated target function 1−0.5𝑥2; (c) the curves of
the target function cos(𝑥) and its approximated functions.

In this work, we focus on SC circuits built with combinational

logic. Such a circuit can only implement polynomials. Thus, given

an arbitrary arithmetic target function, the existing synthesis meth-

ods first approximate the target by a polynomial and then syn-

thesize an SC circuit for the polynomial [11, 13]. The polynomial

approximation introduces error. Conventionally, this error is al-

ways minimized. As an example, in order to implement the target

function cos(𝑥), the previous method [13] will instead implement

a polynomial shown in Fig. 1(a), which is the closest degree-6 poly-

nomial approximation. Fig. 1(c) plots the curves for both the target

cos(𝑥) and the approximated target, which shows that they are

very close, but still have difference as shown in the inset. If the

approximation error is relaxed a little bit, we may find many dif-

ferent target polynomials. This creates a much larger design space
ACM ISBN /20/11. . . $15.00978-1-6654-2324-3
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where an SC circuit with reduced cost may exist. For the example of

cos(𝑥), the optimized SC circuit realizing the closest approximated

target has 37 gates and a critical path of 7 gates. However, if we

allow more approximation error, then it can be approximated by

1−0.5𝑥2, which corresponds to the red curve in Fig. 1(c). This new

target polynomial, although has a larger approximation error, can

be realized by a significantly simplified SC circuit with only a single

NAND3 gate, as shown in Fig. 1(b). This new design achieves an

area-delay product (ADP) reduction of 259×! Previously, this kind

of target function approximation was never explored. In our study,

from this new perspective, we systematically explore the target

function approximation in order to significantly reduce the area

and delay of an SC circuit. The problem we consider is: given a

target function and an error bound, synthesize a minimal SC circuit

realizing an approximated target function with error no more than the

bound. Such SC circuits are applicable to error-tolerant applications

like image processing and neural networks.

However, a major challenge is how to determine a good approxi-

mation to the original target function. We propose three methods to

find good approximations and synthesize the corresponding SC cir-

cuit. Note that in this work, we focus on univariate target functions

to illustrate our methods. However, it is also possible to extend our

methods to handle multivariate functions. The experimental results

show that our methods effectively reduce the area, delay, and ADP

of the SC circuit with a small relaxation to the approximation error.

Since the power consumption is roughly proportional to the area,

and the computation latency is exactly proportional to the delay,

ADP is an indicator of the energy consumption. Therefore, the ADP

reduction indicates the reduction of the energy consumption.

The main contributions of this work are listed as follows.

(1) For the first time, we propose to explore the approximation

of a target function to derive an SC circuit with dramatically

reduced area and delay.

(2) We propose two static approximation methods to minimize

an SC circuit. They first construct a promising set of approxi-

mated target functions and then apply an existing SC circuit

synthesis method to them to identify the best solution.

(3) We propose an efficient dynamic approximation method that

integrates the search of the approximated target function

into the SC circuit synthesis process. It is the most powerful

method and the single-gate implementation of cos(𝑥) shown
in Fig. 1(b) is synthesized by this method.

The code of our proposed methods is made open-source at

https://github.com/SJTU-ECTL/TFASC.

The rest of the paper is organized as follows. Section 2 discusses

the related works on SC circuit synthesis. Section 3 provides the

preliminaries. Section 4 overviews our methods. Sections 5 and 6

present the proposed static and dynamic approximation methods,

respectively. Section 7 shows the experimental results. Finally, Sec-

tion 8 concludes the paper.

2 Related Works

In recent years, a number of works studied the synthesis of SC

circuits [3, 5, 7, 11–13, 17]. In [13] and [7], methods to synthesize

reconfigurable combinational and sequential SC circuits are pro-

posed, respectively. The works [3, 17] further consider synthesizing

fixed SC circuits, which have smaller area than reconfigurable ones.

As revealed by [5, 17], SC circuits have a much larger solution space

than traditional logic circuits since many circuits with different

Boolean functions can realize the same target function stochasti-

cally. Unfortunately, the methods in [3, 17] only exploit a limited

subset of the whole solution space. In [11], a state-of-the-art method

is proposed to design SC circuits based on Maclaurin series expan-

sion of the target function. However, since no thorough exploration

of the solution space is employed, the solution optimality is not

guaranteed. In [12], another state-of-the-art method is proposed

that systematically searches for the optimal solution within a larger

solution space through a search tree. Our work is based on this

method and further advances it by exploring the feasibility of target

function approximation. By this, the solution space is enlarged and

better circuits can be found.

3 Preliminaries

3.1 A General SC Circuit

We consider a general SC circuit design realizing univariate poly-

nomials proposed in [17]. It is shown in Fig. 2. The circuit has 𝑛+𝑚
inputs. The first 𝑛 inputs 𝑋1, . . . , 𝑋𝑛 are supplied with 𝑛 indepen-

dent input bit streams with the same variable probability 𝑥 . The
last𝑚 inputs 𝑌1, . . . , 𝑌𝑚 are given independent bit streams with a

constant probability of 0.5.
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Figure 2: A general form of the SC circuit to realize the target func-

tion [17].

Assume that the Boolean function of the combinational circuit

in Fig. 2 is 𝐹 (𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑚). As shown in [12], the output

probability of the circuit is a function in the form of

𝑔(𝑥) =
𝑛∑
𝑖=0

𝐺 (𝑖)

2𝑚
𝑥𝑖 (1 − 𝑥)𝑛−𝑖 , (1)

where 𝐺 (𝑖) is the number of minterms (𝑎1,. . . ,𝑎𝑛,𝑏1,. . . ,𝑏𝑚) satis-

fying that 𝐹 (𝑎1,. . . ,𝑎𝑛,𝑏1,. . . ,𝑏𝑚)=1 and
∑𝑛
𝑗=1 𝑎 𝑗 =𝑖 . An example

for 𝐺 (𝑖) is illustrated using the 2-dimensional truth table shown

in Fig. 3 with 𝑛=3 and𝑚=2. In this truth table, the columns and

the rows list the combinations of 𝑋 ’s and 𝑌 ’s, respectively. For ex-
ample, 𝐺 (1) is the total number of 1s in the columns with 𝑋1𝑋2𝑋3

as 001, 010, and 100 (i.e., the 3 columns in the lightest grey color

in the figure), since these columns satisfy that 𝑋1+𝑋2+𝑋3=1. In
this case, 𝐺 (1) = 2. Some additional 𝐺 (𝑖) values and the columns

giving these 𝐺 (𝑖)’s are also shown in the figure. From Eq. (1),𝑚
determines the precision of the coefficients. Thus, it is called the

precision parameter [12]. For the Boolean function shown in Fig. 3,

its output probability realizes the following function

𝑔(𝑥) =
2

22
𝑥 (1 − 𝑥)2 +

4

22
𝑥2 (1 − 𝑥) +

2

22
𝑥3 .
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Figure 3: The 2-dimensional truth table of a Boolean function.𝐺 (𝑖)
(0 ≤ 𝑖 ≤ 3) above the table corresponds to the total number of

minterms in the columns with the same shading color.

3.2 The Previous Synthesis Method

In this section, we describe the previous method proposed in [12]

to synthesize the SC circuit in Fig. 2. Suppose the target arithmetic

function is 𝑓 (𝑥).
The form of Eq. (1) resembles a special type of polynomial called

Bernstein polynomial [9]. Its general form is

𝐵(𝑥) =
𝑛∑
𝑖=0

𝑏𝑖

(
𝑛

𝑖

)
𝑥𝑖 (1 − 𝑥)𝑛−𝑖 , (2)

where 𝑏𝑖 is a Bernstein coefficient and
(𝑛
𝑖

)
𝑥𝑖 (1 − 𝑥)𝑛−𝑖 is a Bernstein

basis polynomial. The method in [12] exploits the above connection.

Fig. 4(a) shows a flow chart of the method. It can be decomposed

into two major phases: the target transformation phase and the

Boolean function synthesis phase.

3.2.1 The Target Transformation Phase In this phase, the method

first applies a quadratic programming approach proposed in [13] to

obtain a Bernstein polynomial 𝐵∗(𝑥) (with the Bernstein coefficient

𝑏∗𝑖 ) closest to the target 𝑓 (𝑥):

𝐵∗(𝑥) =
𝑛∑
𝑖=0

𝑏∗𝑖

(
𝑛

𝑖

)
𝑥𝑖 (1 − 𝑥)𝑛−𝑖 . (3)

Comparing Eqs. (1) and (3), we can see that if we choose a

Boolean function such that its 𝐺 (𝑖) = 2𝑚𝑏∗𝑖
(𝑛
𝑖

)
, for all 0 ≤ 𝑖 ≤ 𝑛,

the corresponding combinational circuit can realize 𝐵∗(𝑥). How-
ever, since𝐺 (𝑖) is an integer,𝐺 (𝑖) is set to𝐺∗(𝑖)=round(2𝑚𝑏∗𝑖

(𝑛
𝑖

)
),

where round() is the rounding function. This eventually gives the

following original target Bernstein polynomial (OTBP) to be imple-

mented by the combinational logic:

𝐵𝑇 (𝑥) =
𝑛∑
𝑖=0

𝐺∗(𝑖)

2𝑚
𝑥𝑖 (1 − 𝑥)𝑛−𝑖 . (4)

Note that the OTBP is characterized by a vector
−→
𝐺∗= (𝐺∗(0),. . . ,

𝐺∗(𝑛)). We call it the feature vector (FV) of the OTBP, or original FV

for short, which is the same as the problem vector defined in [12].

3.2.2 The Boolean Function Synthesis Phase By the definition of

𝐺 (𝑖), there exist many different Boolean functions that can realize

the FV
−→
𝐺∗. In this phase, the method synthesizes a Boolean function

with good quality among these candidates.

The final solution is constructed by adding a sequence of cubes

(i.e., product terms) into the on-set of the Boolean function. Each

entry in the FV specifies how many minterms in a specific group of

columns in the 2D truth table should be assigned with the value 1.

For simplicity, the method requires that the later selected cubes be

disjoint to any already selected cubes. Each time a cube is chosen,

some entries in the FV are reduced to indicate that someminterms in

some specific groups of columns have been assigned with the value

1. Due to the disjoint property, the reduction is given by the cube vec-

tor (CV) of the cube, denoted in brackets as [𝐶 (0),𝐶 (1), . . . ,𝐶 (𝑛)],
where𝐶 (𝑘) is the number of minterms of the cube that are covered

by the columns in the 2D truth table with
∑𝑛
𝑖=1 𝑋𝑖 = 𝑘 . For example,

with 𝑛 = 3 and𝑚 = 2, the 2D truth table of the cube 𝑋1𝑌1 is shown
in Fig. 3. From the figure, we can see that the CV of the cube is

[𝐶 (0),𝐶 (1),𝐶 (2),𝐶 (3)] = [0, 2, 4, 2]. The reduced FV is called the

remaining feature vector (RFV). For example, if the original FV is

(1, 3, 6, 2), as the cube with CV [0, 2, 4, 2] is chosen, the FV is re-

duced to (1, 1, 2, 0) as the RFV. The procedure continues until the
RFV reduces to zero. Each time a cube is chosen, it must satisfy the

capacity constraint, which requires that each entry of the CV should

be no more than the corresponding entry of the RFV. For example,

the cube with CV [0, 2, 4, 2] violates the capacity constraint of the

RFV (0, 1, 3, 2), while another cube with CV [0, 1, 2, 1] does not.
The cubes chosen first will influence the later cube selection.

Thus, in order to determine a good solution, a search tree is built.

Each node in the search tree stores both the set of chosen cubes

and the RFV. For each node, since many new cubes can be extracted

from the RFV of that node, it will be expanded to multiple nodes in

the next level. The search tree reaches a leaf when the RFV becomes

zero. In this case, a set of cubes satisfying the original FV is obtained.

The final solution is given by the best leaf node. To speed up the

search, at each node, only the largest cubes that satisfy both the

disjoint property and the capacity constraint are chosen.

4 Overview of the Proposed Methods

From Fig. 4(a), we can see that the OTBP is an important link be-

tween the given target function and the synthesized combinational

circuit. If we change the OTBP slightly, its error over the target

function may increase. However, the final synthesized circuit corre-

sponding to the changed OTBP may improve. We call the changed

OTBP the new target Bernstein polynomial (NTBP). In this work, we

exploit this idea and try to find an NTBP satisfying the given error

bound and giving the best circuit quality. We measure the error of

a target Bernstein polynomial 𝐵𝑇 (either NTBP or OTBP) as the

L2-norm distance between it and the target function 𝑓 , namely

| |𝐵𝑇 (𝑥) − 𝑓 (𝑥) | |2 =

√∫ 1

0
|𝐵𝑇 (𝑥) − 𝑓 (𝑥) |2𝑑𝑥. (5)

We adopt the L2-norm to measure the error, which follows the

convention of approximation error measurement in the SC litera-

ture [13]. It is also possible to use alternative error measures such

as mean absolute error (MAE), which is the L1-norm. We evaluate

the L2-norm by numerical integration.

In the following, we begin with an initial attack to this problem

in which we propose a straightforward solution, that is, we first

construct a set of NTBPs and then select the best synthesized circuit

realizing one of them. We call it the static approximation method. In

view of its low efficiency, we further develop a more powerful solu-

tion, called the dynamic approximation method, which synthesizes

a good NTBP and the corresponding circuit simultaneously.

5 Initial Attack: Static Approximation Method

In this section, we present the static approximation (SA) method. Its

basic idea is to search within a set of NTBPs for one giving the best

SC circuit. It first constructs a set of NTBPs. Then, it only keeps
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Figure 4: The flow charts for (a) baseline (BS) in [12], (b) perturbation (PER) method, (c) degree-precision scanning (DPS) method, and (d)

dynamic approximation (DA) method.

those satisfying the given error bound and applies the synthesis

method in [12] to each kept one to obtain the corresponding SC

circuit. Finally, it picks the SC circuit with the best quality.

Following the basic idea, we propose two detailed SA methods.

They only differ by how the set of NTBPs is constructed, which

is highlighted in the grey blocks in Figs. 4(b) and (c), respectively.

The first one, called the perturbation (PER) method, slightly perturbs

the OTBP (see Fig. 4(b)). This method keeps both the degree 𝑛 and

the precision𝑚, and it constructs the set of NTBPs so that their

corresponding FVs (𝑣0, . . . , 𝑣𝑛) satisfying that for all 𝑖 = 0, . . . , 𝑛,
|𝑣𝑖 −𝐺∗(𝑖) | ≤ 1, where 𝐺∗(𝑖)’s are the FV entries of the OTBP (see

Eq. (4)). The second method, shown in Fig. 4(c), is called the degree-

precision scanning (DPS) method. It forms the set of NTBPs as the

OTBPs with degree 𝑛′ and precision𝑚′, where 𝑛′ runs from 1 to

𝑛. For each 𝑛′,𝑚′ runs from 1 to 𝑛 +𝑚 − 𝑛′. Afterwards, both the

PER and DPS methods select the NTBPs with errors satisfying the

given error bound, and synthesize the circuits for these NTBPs one

after another using the method in [12]. Finally, the best synthesized

circuit is returned.

6 More Powerful Solution: Dynamic

Approximation Method

The SA methods have a rigid partition between the NTBP con-

struction and the circuit synthesis. They first construct a set of

initial NTBPs and then apply the synthesis method to each of them,

which causes a long runtime. In this section, we propose a more

powerful solution, the dynamic approximation (DA) method. It takes

a different approach by searching the NTBPs and synthesizing the

circuit simultaneously.

6.1 Basic Idea

The dynamic method shown in Fig. 4(d) modifies the Boolean func-

tion synthesis phase of the previous method [12]. One key modifi-

cation is that we allow some changes to the original FV during the

search. Our major contribution is that we simultaneously search for

the FVs corresponding to the NTBPs and synthesize the Boolean

function to realize these NTBPs, as shown in the grey block in

Fig. 4(d). The main procedure of the DA method is shown in Algo-

rithm 1. The inputs are the original FV 𝐹𝑉𝑜𝑟𝑔 = (𝐺 (0), . . . ,𝐺 (𝑛)), the
optimization objective 𝑜𝑏 𝑗 , the given error bound 𝑒𝑏 , and the target

Algorithm 1: The proposed dynamic approximation (DA)

method.

Input : the original feature vector 𝐹𝑉𝑜𝑟𝑔 = (𝐺 (0), . . . ,𝐺 (𝑛)) ,
an optimization objective 𝑜𝑏 𝑗 , an error bound 𝑒𝑏 , and the
target function 𝑓 (𝑥) .

Output : the final Boolean function and the corresponding circuit.
1 𝑆𝑠𝑜𝑙 ← ∅; 𝑁𝑟𝑜𝑜𝑡 .𝑅𝐹𝑉 ← 𝐹𝑉𝑜𝑟𝑔 ; 𝑁𝑟𝑜𝑜𝑡 .𝑆𝐶𝐶 ← ∅;

2 𝑆𝑛𝑜𝑑𝑒 ← {𝑁𝑟𝑜𝑜𝑡 };

3 while 𝑆𝑠𝑜𝑙 = ∅ do
4 𝑅 ← candNodesGen(𝑆𝑛𝑜𝑑𝑒 , 𝑒𝑏 );
5 {𝑆𝑛𝑒𝑤 , 𝑆𝑠𝑜𝑙 } ← classifyNodes(𝑅, 𝑒𝑏 );
6 𝑆𝑛𝑜𝑑𝑒 ← pruneNodes(𝑆𝑛𝑒𝑤 );

7 return getBest(𝑆𝑠𝑜𝑙 , 𝑜𝑏 𝑗 );

function 𝑓 (𝑥). The optimization objective is typically a hardware

cost measure, such as the literal count of a sum-of-product (SOP)

expression or the ADP of a multi-level circuit. Assume that the

error of the OTBP is 𝑒𝑜𝑟𝑔 . A requirement on the input parameters

is that 𝑒𝑏 >𝑒𝑜𝑟𝑔 .
As in [12], this method builds a search tree. Each node in the tree

consists of two important data members, namely the set of chosen

cubes (SCC) and RFV (see Section 3.2.2 for details). Line 1 initializes

an empty set 𝑆𝑠𝑜𝑙 to hold the solution nodes. It further defines

the root node 𝑁𝑟𝑜𝑜𝑡 with its RFV as the original FV and its SCC

empty. The procedure expands the nodes level by level. The set of

nodes to be expanded at a level is stored in 𝑆𝑛𝑜𝑑𝑒 . Line 2 initializes
𝑆𝑛𝑜𝑑𝑒 to be the set of nodes at Level 0, i.e., {𝑁𝑟𝑜𝑜𝑡 }. Lines 3–6 are
the main expansion loop. In each iteration, one level of the nodes

in the tree are expanded to the next level. Line 4 first calls the

function candNodesGen to generate a set 𝑅 of candidate nodes that

are promising to be developed into the final solution nodes. Each

node in 𝑅 expands one node 𝑁 in 𝑆𝑛𝑜𝑑𝑒 by adding a new cube into

the SCC of 𝑁 and updating the RFV. Next, Line 5 calls the function

classifyNodes to classify the nodes in 𝑅 into a set 𝑆𝑛𝑒𝑤 of new nodes

and a set 𝑆𝑠𝑜𝑙 of the solution nodes. Then, Line 6 calls the function

pruneNodes to prune the redundant nodes and the unpromising

nodes in 𝑆𝑛𝑒𝑤 . The non-redundant promising nodes are kept in

𝑆𝑛𝑜𝑑𝑒 and passed to the next iteration. The loop terminates when

the solution node set 𝑆𝑠𝑜𝑙 is nonempty at a certain level. Then, the

function getBest is called to obtain the best solution from the nodes

in 𝑆𝑠𝑜𝑙 according to the objective 𝑜𝑏 𝑗 (Line 7). In this study, getBest
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chooses the circuit with the minimum ADP. The following example

illustrates the proposed method.

Example 1. Suppose that the target function is −0.26𝑥2 + 1.06𝑥
and the parameters are 𝑛 = 2 and𝑚 = 4. The L2-norm of the target

function is 0.5. The closest Bernstein polynomial 𝐵∗(𝑥) (see Eq. (3))
has coefficients (𝑏∗0, 𝑏

∗
1, 𝑏

∗
2) = (0, 0.53, 0.8). Then, we can obtain the

FV of the OTBP as (0, 17, 13) using the method shown in Section 3.2.1.

The error 𝑒𝑜𝑟𝑔 of the OTBP is 0.0059. We choose the error bound 𝑒𝑏 as

0.02, which is 4% of the L2-norm of the target function. The search

tree constructed by our method is shown in Fig. 5. The root node 𝑛0 is
expanded into 4 levels until the solution node is found. Each vector in

brackets represents a CV, corresponding to a chosen cube, while each

vector in parentheses represents an RFV. The set of CVs below each node

corresponds to the SCC of the node. For example, at node 𝑛21, its SCC
includes two cubes with the CVs of [0, 16, 0] and [0, 0, 8], respectively.
Its RFV is (0, 1, 5). The nodes 𝑛22 and 𝑛33 in the red dashed rectangles

are pruned during the search due to the duplication of their assigned

truth tables (see Section 6.4 for details). Meanwhile, the nodes 𝑛41, 𝑛42,
and 𝑛43 in the green solid rectangles are the solution nodes with ADPs
of 46.2, 51.6, and 43.2 units, respectively. Finally, the solution node 𝑛43
is returned as the result due to the smallest ADP. By adding the CVs

at the final solution node 𝑛43, we obtain the FV of the final solution

as (0, 18, 12) with error 0.0178 (relative error 3.56%). The final FV is

different from the original one. Therefore, the corresponding function

(i.e., −0.375𝑥2 + 1.125𝑥) is also different from the target function.

This shows an important feature of the DA method—synthesizing the

Boolean function and adapting the original FV occur simultaneously.

We will return to some additional details of this example search tree

later. The ADP of the circuit corresponding to the new target function

is 43.2 units, which is smaller than that corresponding to the OTBP,

which is 51.6 units.
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Figure 5: A search tree constructed by the dynamic approximation

method.

Next, we will describe the details of the functions candNodesGen,

classifyNodes, and pruneNodes.

6.2 Generating the Set of Candidate Nodes

The function candNodesGen expands the nodes in the current level

of the search tree (i.e., in the set 𝑆𝑛𝑜𝑑𝑒 ) to a set of new candidate

nodes. Each candidate node is derived from a node 𝑁 in 𝑆𝑛𝑜𝑑𝑒 by
adding a candidate cube to the SCC of the node 𝑁 . The procedure

of candNodesGen is shown in Algorithm 2. The procedure takes

𝑆𝑛𝑜𝑑𝑒 and a given error bound 𝑒𝑏 as inputs and outputs a set 𝑅 of

the candidate nodes.

Algorithm 2: The procedure candNodesGen.

Input :a set 𝑆𝑛𝑜𝑑𝑒 containing all nodes in the current level and
the error bound 𝑒𝑏 .

Output :a set 𝑅 of the candidate nodes.
1 𝑅 ← ∅;
2 foreach node 𝑁 in 𝑆𝑛𝑜𝑑𝑒 do
3 𝑐𝑢𝑏𝑒𝑆𝑖𝑧𝑒 ← 2�log2 sum(𝑁 .𝑅𝐹𝑉 )	 ; 𝐿 ← ∅;
4 while no cube in 𝐿 satisfies the capacity constraint of 𝑁 .𝑅𝐹𝑉

and 𝑐𝑢𝑏𝑒𝑆𝑖𝑧𝑒 > 0 do
5 obtain the set 𝑆 of cube vectors of 𝑐𝑢𝑏𝑒𝑆𝑖𝑧𝑒 minterms;
6 foreach cube vector𝑉𝑐 in 𝑆 do
7 𝑅𝐹𝑉 ′ ← modify 𝑁 .𝑅𝐹𝑉 by𝑉𝑐 ;
8 𝑁𝐹𝑉 ← 𝑉𝑐 + 𝑎𝑑𝑑 (𝑁 .𝑆𝐶𝐶) + 𝑅𝐹𝑉 ′;
9 compute error 𝑒𝑒𝑠𝑡 of NTBP corresponding to 𝑁𝐹𝑉 ;

10 if 𝑒𝑒𝑠𝑡 ≤ 𝛼𝑒𝑏 then
11 𝑆𝑐𝑢𝑏𝑒 ← cubesFromVector(𝑉𝑐 , 𝑁 , ℎ);
12 foreach cube𝐶 in 𝑆𝑐𝑢𝑏𝑒 do
13 𝑁𝑛 .𝑅𝐹𝑉 ← 𝑅𝐹𝑉 ′, 𝑁𝑛 .𝑆𝐶𝐶 ← 𝑁 .𝑆𝐶𝐶

⋃
𝐶 ;

14 𝐿 ← 𝐿
⋃
𝐶 , 𝑅 ← 𝑅

⋃
𝑁𝑛 ;

15 𝑐𝑢𝑏𝑒𝑆𝑖𝑧𝑒 ← 𝑐𝑢𝑏𝑒𝑆𝑖𝑧𝑒/2;
16 return 𝑅;

In Algorithm 2, Line 1 initializes 𝑅 as an empty set. Next, for each

node 𝑁 in 𝑆𝑛𝑜𝑑𝑒 , new candidate nodes are generated by adding a

candidate cube to the SCC of node 𝑁 (Lines 2–15). The key problem

is to select proper candidate cubes.

We call the number of minterms in a cube its size. The size of

a cube is 2𝑞 , where 𝑞 is a non-negative integer. We try to find the

candidate cubes with the largest sizes, since they lead to an SOP

with a smaller literal count, a measure of the hardware cost we

use during the search. In our problem, since we do not require

cubes to exactly satisfy the capacity constraint as [12] does, we

start to check the cubes with size 𝑐𝑢𝑏𝑒𝑆𝑖𝑧𝑒 = 2 �log2 sum(𝑁 .𝑅𝐹𝑉 ) 	

(Line 3), where the function sum(𝑁 .𝑅𝐹𝑉 ) gives the sum of all the

entries in the RFV of 𝑁 . In this case, the cube size can be a little

larger than the total minterm number required by the RFV of 𝑁 .

This exploits the opportunity brought by the approximation. As an

example, consider the node 𝑛21 in Fig. 5. Its RFV is (0, 1, 5). Since
the sum of all the RFV entries is 6, we start to test the cubes of

size 8. Line 3 also initializes a set 𝐿 as empty. It is used to keep the

candidate cubes.

Then, we enter the main loop to obtain the candidate nodes

expanded from 𝑁 (Lines 4–15). The loop continues when no cube

in 𝐿 satisfies the capacity constraint of the RFV of 𝑁 and the size

of the cubes to be checked is larger than zero (Line 4). Since we do

not require the candidate cubes to satisfy the capacity constraint,

if none of them in 𝐿 satisfies the constraint, it is possible that we

cannot derive a final solution satisfying the given error bound. To

ensure that at least one solution is found, we require at least one

cube in 𝐿 to satisfy the capacity constraint of the RFV of 𝑁 .

Within the loop, we first obtain the set 𝑆 of CVs of 𝑐𝑢𝑏𝑒𝑆𝑖𝑧𝑒
minterms by enumerating them according to their special forms [12]

(Line 5). Next, for each CV 𝑉𝑐 in 𝑆 , we first evaluate the estimated

error 𝑒𝑒𝑠𝑡 of the potential new FV if any cube corresponding to

the CV 𝑉𝑐 is chosen as a candidate cube (Lines 7–9). A key idea

of the DA method is the simultaneous NTBP search and circuit

synthesis. A new FV (NFV) is defined as the FV of an NTBP. If 𝑒𝑒𝑠𝑡
is smaller than a relaxed error bound, we create candidate nodes by

expanding node 𝑁 with cubes corresponding to 𝑉𝑐 (Lines 10–14).
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In order to obtain 𝑒𝑒𝑠𝑡 , the newRFV𝑅𝐹𝑉 ′ is first obtained (Line 7).

This is done by first subtracting 𝑉𝑐 from the RFV of 𝑁 . Since the

cube is not required to satisfy the capacity constraint, the subtrac-

tion result can have some negative entries. Then, those negative

entries are set to zero to get the final 𝑅𝐹𝑉 ′. This essentially modifies

the original FV. As an example, the RFV of the node 𝑛21 in Fig. 5

is (0, 1, 5). As a cube with the CV [0, 2, 2] violating the capacity

constraint is added to this node, the RFV first becomes (0,−1, 3) by
subtracting the CV, and then is modified to (0, 0, 3). This leads to
the node 𝑛32 in Fig. 5. Line 8 obtains the potential NFV by adding

𝑉𝑐 , CVs of all the cubes in SCC of 𝑁 , and 𝑅𝐹𝑉 ′, where the function

𝑎𝑑𝑑 (𝑁 .𝑆𝐶𝐶) gives the sum of CVs of all the cubes in SCC of 𝑁 . For

the example in Fig. 5, when the CV [0, 2, 2] is considered for 𝑛21,
the RFV (0, 1, 5) of 𝑛21 is first modified to 𝑅𝐹𝑉 ′ as (0, 0, 3). Then, by
adding the CV [0, 2, 2], the CVs [0, 16, 0] and [0, 0, 8] of the cubes
in 𝑛21’s SCC, and 𝑅𝐹𝑉

′, the potential NFV is obtained as (0, 18, 13),
which is different from the original FV (0, 17, 13). Line 9 further

calculates an estimated error 𝑒𝑒𝑠𝑡 of the NTBP corresponding to the

potential NFV.

Then, Lines 10–14 add the cubes corresponding to 𝑉𝑐 to SCC of

node 𝑁 to expand it to new nodes if the estimated error 𝑒𝑒𝑠𝑡 is less
than a relaxed error bound 𝛼𝑒𝑏 , where 𝛼 > 1. The relaxed error

bound is used because 𝑒𝑒𝑠𝑡 is just an estimated error. By the later

function classifyNodes, when a node is expanded into a solution

node, its RFV may be ignored, as is the node 𝑛43 in Fig. 5. This may

lead to the error drop. In this case, the previous estimated error is

an overestimate. Given this reason, for a CV, even if 𝑒𝑒𝑠𝑡>𝑒𝑏 , the
node may still be developed into a final solution. In order to keep

such promising CVs, the relaxed error bound is applied during the

search. We set 𝛼 to 1.02 in this study. If 𝑒𝑒𝑠𝑡 ≤𝛼𝑒𝑏 , Line 11 calls the
function cubesFromVector from [12] to obtain a set of cubes 𝑆𝑐𝑢𝑏𝑒
with CV 𝑉𝑐 . The function takes 𝑉𝑐 , 𝑁 , and an additional parameter

ℎ as inputs, where ℎ limits the size of 𝑆𝑐𝑢𝑏𝑒 to trade solution quality

with runtime. Each cube 𝐶 in 𝑆𝑐𝑢𝑏𝑒 is a candidate cube. For each 𝐶 ,
Line 13 creates a candidate node 𝑁𝑛 from 𝑁 and 𝐶 by setting 𝑁𝑛 ’s
RFV and SCC properly. Line 14 adds 𝐶 and 𝑁𝑛 into the sets 𝐿 and

𝑅, respectively.
When all CVs in 𝑆 have been evaluated, Line 15 reduces 𝑐𝑢𝑏𝑒𝑆𝑖𝑧𝑒

to evaluate the cubes with their sizes halved in the next iteration.

After all the nodes in 𝑆𝑛𝑜𝑑𝑒 are processed, Line 16 returns 𝑅.

6.3 Classifying the Candidate Nodes

The function classifyNodes partitions the set 𝑅 of candidate nodes

into two sets, namely the set 𝑆𝑛𝑒𝑤 of the nodes to be further evalu-

ated and the set 𝑆𝑠𝑜𝑙 of the solution nodes. For each node 𝑁 in 𝑅, the
function evaluates the error of its assigned FV, where the assigned

FV is the sum of the CVs of all the cubes in its SCC. If the error

is no larger than 𝑒𝑏 , the node 𝑁 is considered as a solution node

and added into the set 𝑆𝑠𝑜𝑙 , even though the RFV of 𝑁 is possibly

non-zero. Otherwise, it is considered as a node to be possibly passed

to the next level and added into the set 𝑆𝑛𝑒𝑤 .

6.4 Pruning Redundant Nodes and

Unpromising Nodes

After we obtain the set 𝑆𝑛𝑒𝑤 of the nodes to be possibly passed to the

next level, the function pruneNodes further prunes the redundant

ones and the unpromising ones.

If multiple nodes in 𝑆𝑛𝑒𝑤 have the same truth table given by

their SCCs, only one of them is further kept in 𝑆𝑛𝑒𝑤 to eliminate

redundant evaluation. For example, in Fig. 5, the nodes 𝑛22 and 𝑛33
are pruned since they have the same assigned truth tables as the

nodes 𝑛21 and 𝑛31, respectively.
Besides pruning the redundant nodes, the function pruneNodes

also prunes the unpromising nodes. For our problem, its objective

is to find a circuit with good quality, while satisfying the error

constraint. However, there is a potential contradiction between

the objective and the constraint. If we only keep the nodes with

better circuit quality, their errors may be large and thus they will

be pruned later. However, if only the nodes with small errors are

kept, the nodes with better quality may be dropped, leading to a

sub-optimal result. To solve this problem, the function pruneNodes

further uses two passes of sorting and pruning. It has three pruning

parameters𝑤 , 𝑘𝐿 , and 𝑘𝐸 .
For the first pass, pruneNodes first sorts the nodes in 𝑆𝑛𝑒𝑤 by

the estimated error 𝑒𝑒𝑠𝑡 in ascending order. Then, it sorts the nodes

with the same 𝑒𝑒𝑠𝑡 by the literal count in ascending order. The first

𝑘𝐸 sorted nodes are added into the set 𝑆𝑘𝑒𝑝𝑡 . The second pass works
on the remaining nodes. It first sorts them by the literal count. A

heuristic in [12] is adopted to prune the nodes with𝑤 literals more

than the minimum among all the remaining nodes. It further sorts

the nodes with the same literal count by 𝑒𝑒𝑠𝑡 in ascending order.

Finally, the first 𝑘𝐿 sorted nodes are added into the set 𝑆𝑘𝑒𝑝𝑡 , and
𝑆𝑘𝑒𝑝𝑡 is returned as the result. For example, in Fig. 5, the set 𝑆𝑛𝑒𝑤
at Level 3 contains two non-redundant nodes 𝑛31 and 𝑛32. With 𝑘𝐸
and 𝑘𝐿 both set as 1, the nodes 𝑛31 and 𝑛32 are added to 𝑆𝑘𝑒𝑝𝑡 by
the first and second passes, respectively. From these two passes,

we can keep both the nodes with small estimated error and literal

count to ensure finding a valid solution and achieving good quality.

7 Experimental Results

In this section, we show the experimental results. All the exper-

iments were done on a computer with an Intel CPU of 2.93GHz

and an 8GB memory. In the function getBest called by the proposed

DA method (see Line 7 of Algorithm 1), the logic synthesis tool

ABC [10] was applied with the commands “collapse; sop; fx; strash;

dch; balance; map” to synthesize a multi-level SC circuit and obtain

its ADP. In all the following experiments, ABC was also used to

optimize the SC circuits generated by the previous methods and

the proposed PER and DPS methods for a fair comparison. All the

circuits were mapped with the MCNC standard cell library [15].

7.1 Performance on Arithmetic Functions

In this section, we study the performance of the proposed methods

on 12 target functions from [13] and [11], which are listed in Table 1.

For each target function 𝑓 , we set the error bound 𝑒𝑏 to 𝛽 | |𝑓 | |2,
where 0 < 𝛽 < 1 is an adjustable relative error bound and | |𝑓 | |2
is the L2-norm of 𝑓 in the unit interval. The relative error bounds

were chosen as 2% and 5%. We considered 4 degree-precision pairs

(𝑛,𝑚) as (4, 4), (4, 8), (6, 4), and (6, 8). This gives 48 benchmarks

in total. However, two of them have original errors 𝑒𝑜𝑟𝑔 larger than

the error bound 𝑒𝑏 , and were excluded due to the requirement that

𝑒𝑏 >𝑒𝑜𝑟𝑔 . Thus, 46 benchmarks were finally chosen.

The prior state-of-the-art method [12] was chosen as the baseline

(BS) method for comparison. Our methods include the PER, DPS, and
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Table 1: The target functions used in our experiments.

ID function ID function ID function ID function

1 sin(𝑥) 4 log(𝑥 + 1) 7 tanh(4𝑥) 10 1/(1 + exp(−𝑥))
2 cos(𝑥) 5 sin(𝜋𝑥)/𝜋 8 𝑥0.45 11 𝑥2.2

3 exp(−𝑥) 6 tanh(𝑥) 9 exp(−2𝑥) 12 0.5 cos(𝜋𝑥) + 0.5

DA methods. The proposed PER and DPS methods take a long time

to evaluate all the NTBPs in the candidate set. For a fair comparison

with the baseline, for these two methods, we set a runtime bound

for each benchmark as 2.5 times the runtime of the baseline. Once

the runtime bound was reached, we stopped the search even if some

candidate NTBPs had not been evaluated, and chose the current best

result. For the proposed DA method, 4 parameters ℎ,𝑤 , 𝑘𝐿 , and 𝑘𝐸
were used to control the solution quality and the runtime, where ℎ
is described in Section 6.2 and𝑤 , 𝑘𝐿 , and 𝑘𝐸 are pruning parameters

described in Section 6.4. From extensive parameter study, we set

𝑘𝐸=1 to ensure the finding of a solution, and set ℎ=1, 𝑤=2, and
𝑘𝐿=4 to ensure a good trade-off between the runtime and solution

quality. For the BS method, three parameters ℎ, 𝑤 , and 𝑘𝐿 were

used [12], and we set them as ℎ=2,𝑤=2, and 𝑘𝐿=5. This allows it to
run for a longer time than the DA method, which ensures sufficient

exploration of the solution space. For the PER and DPS methods,

which are based on the BS method, the same parameters were used.
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Figure 6: The area, delay, and area-delay product normalized to the

BSmethod for the 12 arithmetic benchmarkswith (𝑛,𝑚) set to (6, 4) .
The results by the BS method are listed above each column.

Fig. 6 plots the area, delay, and ADPs of the circuits produced by

our methods normalized to those of the baseline for the 12 target

functions with (𝑛,𝑚) set to (6, 4) and a 2% relative error bound.

For most of these target functions, the proposed PER, DPS, and DA

methods all synthesize SC circuits with smaller area, delay, and

ADP than the BS method. For some target functions, the circuits

synthesized by the PERmethod are better than those synthesized by

the DPS method, while for others, the DPS method is better. For all

the target functions except the 8th one, the DA method synthesizes

the best circuits with the smallest area, delay, and ADP. For the

DA method, the ADP of the synthesized circuits for 9 out of the 12

target functions is reduced by more than 80%. This is because as up

to 2% relative error is allowed, the DA method finds an NTBP with

FV different from the original FV, which leads to an SOP Boolean

function with much fewer cubes.

Table 2 lists the average hardware cost, the average mean abso-

lute error (MAE), and the average synthesis runtime over the 46

benchmarks together with the relative improvement of our meth-

ods over the BS method (in parentheses). To evaluate the MAE, 100

simulations were done for each of the 9 𝑥 values 0.1, 0.2, . . . , 0.9,
and the MAE was obtained by averaging the absolute errors with

respect to the target function over all these 900 tests. The bit stream

length for each simulation was 1024. For the average area, delay,

and ADP, all the proposed methods are better than the baseline.

The DA method is better than the SA methods (i.e., PER and DPS).

For the relative error bound of 2% (resp. 5%), it reduces the area,

delay, and ADP over the baseline by 71% (resp. 79%), 44% (resp.

50%), and 81% (resp. 89%), respectively, with a 12% (resp. 62%) MAE

degradation. Since the average MAE of the baseline is as small as

0.0105, such a relative MAE degradation is not large in terms of the

magnitude. This shows the effectiveness of the proposed methods.

Remarkably, for some target functions, the proposed DA method

can aggressively minimize the SC circuits. One notable example

is cos(𝑥). As mentioned in Section 1, it can be realized by a single

NAND3 gate. In fact, it is synthesized by the DA method under 2%

relative error bound with (𝑛,𝑚) as (6, 8). It has an ADP reduction

of 99.5% over the SC circuit synthesized by the BS method. In terms

of the gate count, the DA method finds the optimal solution for this

case, showing its optimality. Interestingly, the approximated target

function 1−0.5𝑥2 is exactly the degree-2 Maclaurin polynomial

of cos(𝑥), indicating that the DA method finds a quite reasonable

approximation. Moreover, the SC circuit synthesized by the DA

method requires only 3 input bit streams instead of 14 required by

the one synthesized by the BS method. Therefore, it also greatly

reduces the cost of the stochastic number generator. Besides, for the

target functions tanh(𝑥) and 1/(1 + exp(−𝑥)), the DA method can

achieve 93.3% and 97.5% ADP reduction, respectively, both with

only 0.001 MAE degradation compared to the BS method.

In terms of the average runtime, the proposed SA methods are

slower than the baseline. In contrast, the proposed DA method is

faster. It runs even faster with a larger error bound. This shows

another advantage of the DA method: it can terminate the solution

search early without having to reach a zero RFV, while the baseline

method must continue the search until a zero RFV is reached. Over-

all, the proposed DA method shows significant advantages over

the baseline: it reduces the hardware cost dramatically, while being

faster than the baseline. The DA method also outperforms the other

two proposed methods, PER and DPS, in terms of efficiency and

solution quality. Therefore, the DA method is the best among the

three proposed methods.

7.2 Comparison to the Maclaurin Polynomial

Approximation Method

In this section, we further compared the DA method to another

state-of-the-art SC circuit synthesis method [11]. It approximates

the target function with a degree-𝑛 Maclaurin polynomial and

synthesizes the circuit based on the factorization of the Maclaurin

polynomial. We call it the Maclaurin polynomial (MP) method. We
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Table 2: Average hardware cost and synthesis runtime for the arithmetic benchmarks.

relative average area average delay average ADP average MAE average runtime (s)
error bound BS PER DPS DA BS PER DPS DA BS PER DPS DA BS PER DPS DA BS PER DPS DA

2%
47.2 38.3 18.1 13.5 6.2 5.5 4.0 3.5 334.4 244.8 94.8 64.3 0.0105 0.0106 0.0112 0.0117 98.1 195.4 182.3 93.5

(19%) (62%) (71%) (11%) (36%) (44%) (27%) (72%) (81%) (-2%) (-7%) (-12%) (-99%) (-86%) (5%)

5%
47.2 37.9 15 10.1 6.2 5.4 3.7 3.1 334.4 242 69.8 37.9 0.0105 0.0108 0.0132 0.0169 98.1 195.7 193.3 62.3

(20% (68%) (79%) (12%) (40%) (50%) (28%) (79%) (89%) (-3%) (-26%) (-62%) (-99%) (-97%) (37%)

selected 8 out of the 12 target functions from Table 1 for evaluation.

Their IDs are listed in the first column of Table 3, together with the

degrees of the Maclaurin polynomials for the MP method shown

in the parentheses (MP degree). The other target functions were

not evaluated since for up to the degree of 20, their Maclaurin

polynomials cannot satisfy the coefficient constraints required by

the MP method. For the DA method, (𝑛,𝑚) = (6, 8) was used to

obtain the OTBPs from the target functions, and the relative error

bound was set as 2%.

For each selected target function, we used the method of [11] to

synthesize the SC core circuit, while the circuits to generate the bit

streams with constant probabilities were synthesized by the method

of [3]. These required constant probabilities are transformed from

independent bit streams of probability 0.5. Moreover, since the SC

circuits synthesized by the DA method are combinational, for a fair

comparison, the SC circuits synthesized by the MP method were

also transformed into equivalent combinational circuits. Thus, the

𝑥2 terms in it were realized by an AND2 gate with two independent

input bit streams of probability 𝑥 instead of a delay element [11].

Table 3: Experimental Results for the MP and DA methods. The

relative error bound of the DA method is 2%.

target function area delay ADP MAE
ID (MP degree) MP DA MP DA MP DA MP DA

1 (7) 56 7 7.5 3.3 420 23.1 0.0107 0.0126
2 (6) 41 3 5.5 1.1 225.5 3.3 0.00804 0.0106
3 (6) 60 8 9 3.1 540 24.8 0.0117 0.0129
4 (7) 81 29 10.9 5.7 882.9 165.3 0.0136 0.0126
5 (9) 41 6 6 2.6 246 15.6 0.00976 0.00985
6 (5) 36 12 6.8 3.3 244.8 39.6 0.0136 0.0121
9 (6) 85 18 10.9 4.1 926.5 73.8 0.0110 0.0125
10 (5) 42 4 6.3 2.5 264.6 10 0.0124 0.0135
average 55.3 10.9 7.9 3.2 468.8 44.4 0.0113 0.0121

(80%) (59%) (91%) (-6.5%)

The experimental results for area, delay, ADP, and MAE are

shown in Table 3, where the MAE was evaluated by the same ap-

proach as in Section 7.1. The DA method with 2% relative error

bound improves the circuit area, delay, and ADP by 80%, 59%, and

91%, respectively, over the MP method on average, with only 6.5%
degradation of MAE. Note that the computation latency has the

same reduction as the delay. Therefore, the proposed DA method

synthesizes a much smaller and faster SC circuit than the MP

method with only a little MAE degradation.

7.3 Case Study: Gamma Correction

In this section, we evaluated the DA method for an image process-

ing application, gamma correction, which has the target function

𝑥0.45. We compared it with the BS method. We set (𝑛,𝑚) to (4, 4).
The area, delay, and ADPs of the circuits produced by the two meth-

ods are listed in Table 4, showing that the proposed DA method

synthesizes a much better circuit than the BS method with a given

error bound. Specifically, the circuit synthesized by the DA method

has a significant reduction in ADP by 35%, over the BS method for a

2% relative error bound. As the relative error bound increases from

2% to 5%, the ADP of the circuit is further reduced by 16%.

Table 4: The hardware cost of the circuits and the average PSNR

and average worst-case absolute error (WAE) of processed images

for gamma correction.

relative area delay ADP average average
error PSNR (dB) WAE
bound BS DA BS DA BS DA BS DA BS DA

2%
34 25 5.2 4.6 176.8 115 34.15 33.54 0.117 0.122

(26%) (12%) (35%) (-1.8%) (-4.1%)

5%
34 19 5.2 4.6 176.8 87.4 34.15 32.08 0.117 0.127

(44%) (12%) (51%) (-6.1%) (-8.1%)

�
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Figure 7: Images for the gamma correction experiment. (a): input

image; (b): reference output image; (c): output image by the SC cir-

cuit synthesized by the BS method; (d): output image by the SC cir-

cuit synthesized by the DA method for a 5% relative error bound.

The processed images of a sample are shown in Fig. 7. Compared

with the images in Figs. 7(b) and (c), the image produced by the DA

method shows no significant quality degradation.

In order to quantitatively evaluate the quality of the images pro-

cessed by each circuit, we used 10 input images from [6] for testing.

Since an SC circuit has random errors, 100 random simulations

were done for each image with the stochastic bit stream length

set to 512. The average peak signal-to-noise ratio (PSNR) and the

average worst-case absolute error (WAE) over the 100 simulations

for each image was obtained, and the averages of these mean values

over the 10 images are listed in Table 4. For the DA method, both

the average PSNR and WAE show small relative degradation over

the BS method for 2% relative error bound. As the relative error

bound increases to 5%, the average PSNR and WAE further degrade.

However, such degradation is not serious as shown in Fig. 7, but a

further 16% ADP improvement is achieved by the DA method.

8 Conclusions

In this work, we explore the target function approximation to mini-

mize an SC circuit. We proposed two static and one dynamic approx-

imation methods to identify a good target function approximation

and the corresponding SC circuit. All the proposed methods can

produce an SC circuit with much smaller area, delay, and area-delay

product than the prior state-of-the-art methods. Furthermore, as the

most effective and efficient proposed method, the dynamic method

also shows runtime advantage over the prior method [12].
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