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Abstract—Approximate multipliers have attracted significant
attention of researchers for designing low-power systems. The
most area-consuming part of a multiplier is its compressor
tree (CT). Hence, the prior works proposed various approxi-
mate compressors to reduce the area of the CT. However, the
compression strategy for the approximate compressors has not
been systematically studied: Most of the prior works apply their
ad hoc strategies to arrange approximate compressors. In this
work, we propose OPACT, a method for optimizing approximate
compressor tree for approximate multiplier. An integer linear
programming problem is first formulated to co-optimize CT’s
area and error. Moreover, since different connection orders of the
approximate compressors can affect the error of an approximate
multiplier, we formulate another mixed-integer programming
problem for optimizing the connection order. The experimental
results showed that OPACT can produce approximate multipliers
with an average reduction of 24.4% and 8.4% in power-delay
product and mean error distance, respectively, compared to
the best existing designs with the same types of approximate
compressors used.

Index Terms—Approximate Multipliers, Compressor Tree, Ap-
proximate Compressors, Integer Programming, Optimization

I. INTRODUCTION

Approximate computing, an emerging computing paradigm,
designs highly energy-efficient computing systems at the cost
of slight accuracy drop [1], [2]. This property well matches
many recent error-tolerant but power-hungry applications, such
as data mining and deep learning [3], [4]. As multipliers play
an important role in many computation-intensive applications,
many works focus on designing approximate multipliers.

A multiplier has three main parts: partial product generator
(PPG), compressor tree (CT), and carry propagation adder
(CPA). PPG’s output is a bit matrix (BM), each entry of which
is a partial product. CT reduces each column in BM to 1 or 2
remaining bits. For generating the final product, CPA is further
applied to sum up CT’s final output BM. Among the existing
works on approximate multiplier design, some approximate
the PPG part [5]-[7], while most of the others approximate
the CT since it takes the most area in a multiplier.

Compressors are the basic component of a CT. The prior
works on approximating CT proposed various approximate
compressors, which can be divided into two types, those with
unequally weighted outputs [8]-[10] and those with equally
weighted outputs [11], [12]. However, the compression strat-
egy for the approximate compressors has not been systemati-
cally studied: to build the CT, existing methods often arrange
the approximate compressors in an ad hoc way. Moreover,

the connection order of the approximate compressors in a CT
has an impact on the final error, while this point is often
overlooked [10].

In this paper, to address the above issues, we propose
OPACT, a systematic method for optimizing approximate
compressor tree for approximate multiplier. First, an integer
linear programming (ILP) problem is set up to allocate com-
pressors, aimed at co-optimizing the area and error of the
CT (see Section III-A). Then, a mixed-integer programming
(MIP) formulation is proposed to optimize the connection
order for those compressors obtained from the previous ILP
problem (see Section III-B). Due to space limit, we only
present the methodology on approximate compressors with
equally weighted outputs, which have smaller hardware cost
but larger error than those with unequally weighted outputs.
However, OPACT can be easily adapted to those with un-
equally weighted outputs. The experimental results showed
that OPACT can produce approximate multipliers with an
average reduction of 12.4%, 24.4%, and 8.4% in area-delay
product (ADP), power-delay product (PDP), and mean error
distance (MED), respectively, compared to the best existing
designs using the same types of approximate compressors.

II. PRELIMINARIES AND RELATED WORKS

In this section, we discuss preliminaries and related works.

A. Error Metrics

We describe three typical error metrics used for measuring
the error for approximate computing: error rate (ER), MED,
and mean relative error distance (MRED) [13].

Suppose that the given accurate circuit has M input com-
binations in total and the ¢-th (1 < 7 < M) one occurs
with probability p;. Denote the approximate and the accurate
outputs based on the binary radix encoding under the i-th
input combination as Y; and Yj, respectively. ER gives the
probability that the output of an approximate circuit is incor-
rect, calculated as ER = ZlgigM:if,;;ﬁY, p;. MED and MRED
are measures on the average error magnitude, calculated as
MED = Y°M |V — Yilp; and MRED = Y1 MXily,
respectively.

B. Compressors

Compressors are the basic modules to construct a CT. In this
work, exact 2:2 and 3:2 compressors and approximate 3:2 and
4:2 compressors with equally weighted outputs from [11] are



used.! An exact 2:2 (resp. 3:2) compressor, shown in Fig. 1(a)
(resp. Fig. 1(b)), is a 1-bit half (resp. full) adder, which takes
2 (resp. 3) bits as inputs and outputs 2 bits, a sum bit S and
a carry-out bit C.

(a) (b) (c) (d)

Fig. 1. Schematics of (a) exact 2:2 compressor, (b) exact 3:2 compressor, (c)
approximate 3:2 compressor, and (d) approximate 4:2 compressor.

The approximate 3:2 and 4:2 compressors from [11] are
shown in Figs. 1(c) and (d), respectively. Their outputs w;
and wy have the same weights as their inputs. Hence, we call
them approximate compressors with equally weighted outputs.

Assume that the probability of being a 1 (hereafter simply
referred to as probability) for input x; is p; and that all
the inputs are independent. Then, we can obtain from the
truth table the output probabilities of the exact 2:2, exact 3:2,
approximate 3:2, and approximate 4:2 compressors as shown
in Egs. (1), (2), (3), and (4), respectively.

P(S =1)=po+p1— 2pop1, 1)
P(C =1) = pop:.
P(S =1)=(po+p1+p2) —2(pop1 +pop2 +p1p2) +4popip2, ?)
P(C = 1) = pop1 + popz2 + p1p2 —2pop1p2.
P(wy = 1) = po + p1 — p1po,

1) — 3)
P(w2 = 1) = p2 + pipo — p2p1po.
P(wi = 1) = p1+po+p3p2+2pspo
+ p1po — 2p3p1po — p3p2p1 — P3p2po + P3P2p1Po, @)

P(wa = 1) = pa+ps+p1po—p3pz —P2p1Po — P3P1Po
+ p3p2pipo-

For the approximate 3:2 and 4:2 compressors, we also list
their MEDs in Egs. (5) and (6), respectively.

MED3.5 = pop1p2, (5)
MEDy.o = pop1p2+p1p2p3+2pop1ps(1—p2). (6)

C. Fartial Product Generator and Compressor Tree

There are two major types of PPGs for a multiplier, AND
gate-based and modified Booth encoding-based. In this paper,
we only use AND gate-based PPG for illustration due to space
limit. PPG’s output is a BM. In Fig. 2, the BM BM, is
the output BM of an 8-bit PPG. Its height is 8. A PPG’s
output BM is compressed to a BM with two rows by a
CT. The CT of an approximate multiplier (hereafter simply
referred to as approximate CT) consists of exact compressors
and approximate compressors as shown in Fig. 2. If a 2:2
(resp. 3:2) compressor is applied at column j, then the bit
number in column 5 reduces by 1 (resp. 2) and that in column
(j + 1) increases by 1. If an approximate 3:2 (resp. 4:2)

"Exact 2:2 and 3:2 compressors are the basic ones to build other larger
exact compressors and thus give finer granularity for potentially building a
better CT.

compressor is applied at column 7, then only the bit number
in column j reduces by 1 (resp. 2). An approximate CT has
multiple compression stages. Fig. 2 shows an example of
a compression process for an 8-bit approximate multiplier,
which has two stages. According to the convention used in
this paper, compression stage ¢ compresses BM BM;_; and
produces BM BM;, as shown in Fig. 2.
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Fig. 2. A compression process of an 8-bit approximate multiplier.

D. Related Works

We describe several previous works on designing better
approximate compression schemes. For an n-bit approximate
multiplier, the work [11] divides the PPG’s output BM into two
parts: the least significant part (LSP) from the 0-th column to
the (n—1)-th column and the most significant part (MSP) from
the n-th column to the (2n—2)-th column. Each column of the
LSP with more than 2 bits is compressed by an approximate
compressor with input size equal to the bit count of the
column. The MSP is compressed by the Dadda scheme but
hybridly uses the approximate and the exact compressors. The
work [12] empirically finds that hybridly using approximate
and exact compressors at one column would increase the final
error. Hence, it improves the scheme from [11] by using only
exact or approximate compressors at one column. Moreover,
it increases the number of columns in the LSP. To the best of
our knowledge, the work [10] is the first one to claim that the
connection order of the compressors in an approximate CT can
affect the error and proposes a heuristic approach to optimize
the connection order. However, it is manually designed and
only applicable to its own compressors.

III. OPTIMIZATION OF APPROXIMATE COMPRESSOR TREE

In this section, we will present our proposed optimization
method OPACT, aimed at co-optimizing the area of the ap-
proximate CT and the error of the approximate multiplier. The
error metric we consider here is MED. OPACT has two stages.
The first stage optimizes the allocation of the compressors
at each column of each compression stage by co-optimizing
the area and the MED of the approximate CT based on a



rough MED model (see Section III-A). We remark that since
our approximate multiplier uses an accurate CPA, the MED
of the approximate CT is just the MED of the approximate
multiplier. After this stage, we determine the numbers of all
types of compressors applied at each column of all BMs
during the compression process. The second stage optimizes
the connection order of all the compressors obtained from the
first stage by minimizing an improved MED estimation of the
approximate CT (see Section III-B).

A. Optimization of Compressor Allocation

In this section, we propose an ILP-based formulation to
optimize the compressor allocation. Before describing our
method, some definitions are first given. We define the word
length of the multiplier as m. According to the description
in Section II-C, CT reduces the PPG’s output BM into a BM
with two rows through multiple compression stages. We define
the number of compression stages as s. In order to facilitate
subsequent modeling and compare with other works fairly, s
is fixed as the number of compression stages in [11], [12].

Same as [14], we model each BM by a bit count vector
(BCV) V = [x;_1,21-2,...,Z0], where [ is the number of
columns in this BM and z; (0 < j <{—1) is the number of
bits in column j of the BM. We use 1 to denote the BCV for
the output BM BM|, of the PPG; see Fig. 2 for an example.
Generally, the BCV 1} for an m-bit AND-gate based PPG is:

Vo=(1,2 1),

During the compression process, the BM changes after each
compression stage and the corresponding BCV changes. We
denote the BCV for BM; (1 <i < s) as V;. Fig. 2 shows the
BCVs for BM; and BM>, i.e., V7 and V5.

Generally, exact compressors can be applied at the left-most
column of a BM, which will produce a new column of bits
before the left-most one due to the generated carry signals.
However, in our work, we enforce a constraint that no exact
compressor is applied at the left-most column. This simplifies
the formulation of the optimization problem, as the lengths of
all BCVs remain with the same value of (2m — 1). Although
this constraint limits the optimization space, the application
of compressors at each BM’s left-most column during the
compression process is very rare. Hence, it has very little
impact on the optimality of our solution.

We denote the numbers of exact 2:2, exact 3:2, approximate
3:2, and approximate 4:2 compressors applied at column j
(0 < j < 2m—2) OfBMi (0 < ) < 3—1) as h,‘J,
fij» Dij» @i, respectively. These four types of variables
are unknowns to be solved in order to determine how to
allocate compressors at each column of each compression
stage. Additionally, we also takes the MED introduced by the
approximate compressors into consideration. We denote the
MED:s introduced by an approximate 3:2 and an approximate
4:2 compressor as e and FE, respectively. At this stage, for
simplicity, we assume that all bits in each BM during the
compression process have a probability of 0.25, which equals
the probability of each bit in BM; when the inputs to the
multiplier are uniformly and independently distributed. Thus, e
and F are fixed as g 4 and 128 by Eqgs. (5) and (6), respectively.
Clearly, the above assumption is not necessarily true. We will

seo.,m—1,mm—1,..

improve the MED estimation of the approximate compressors
in the next section.
Our proposed ILP formulation is as follows:

min aH+ﬂF+7P+5Q+wD @)

st H=3 03" P hiy, F=3205"02figs ®

=3 22’” “pig, Q=202 22’" R C)

di; :pi,je—i—ql,]E for0<i<s—1, O <j<2m-2, (10)

=i Xy 22]dm7 (11)

hijom—2 = fi,27n72 =0, for0<i<s—1, (12)

hij>0,fi; >0 for0<i<s—1,0<j<2m—3, (13)

0i,; >0, gi;j >0,for0<i<s—-1,0<7<2m—-2, (14)

2h; ; + 3fi; + 3pi,; + 4q:,; < Viljl, (15)

for0<i<s—1,0<7<2m — 2,

Vigr[d]= Vilj] = (hij + 2fij + pij + 24i,5)

(hij1+fij-1), for0<i<s—1,1<j<2m-—2,

Vi1 [0]=Vi[0]~(hio+2fio+Ppio+2gi0), for0 <i< s —1,(17)

0<Vi[j] <2, for0<j < 2m—2. (18)

(16)

We aim to co-minimize the area and the introduced MED of
all the compressors. Thus, the optimization target is given by
Eq. (7). It is a linear combination of the areas and the MEDs of
all the compressors. It has five constants «, 3, v, d, and w. The
first four constants represent the real areas of the exact 2:2,
exact 3:2, approximate 3:2, and approximate 4:2 compressors
synthesized in Nangate 45nm technology [15] by Synopsys
Design Compiler [16], respectively. The last constant w is a
parameter controlling the weight of MED in the optimization
target. H, F, P, and @ are the total numbers of exact 2:2,
exact 3:2, approximate 3:2, and approximate 4:2 compressors,
respectively, calculated by Egs. (8) and (9). D is the total
MED introduced by all the compressors. To get D, we first
calculate d; ;, which is the MED introduced at column j of
BM;. It is calculated by directly summing up the MEDs of all
the approximate compressors at the given column, as shown in
Eq. (10). Then, the total MED D is calculated as a weighted
sum of each column’s MED, as shown in Eq. (11).

The constraint mentioned above that no exact compressor
should be applied at each BM’s leftmost column is imple-
mented by Eq. (12). Eq. (15) corresponds to the requirement
that the number of inputs of all the compressors applied at
column j of BM; should be no more than the bit count at this
column, i.e., V;[j].

The bit count in column j of BM; should satisfy Eq. (16),
since by Section II-B, each exact 2:2, exact 3:2, approximate
3:2, and approximate 4:2 compressor applied at column j
reduces the bit count of column j by 1, 2, 1, and 2, respec-
tively, while each exact compressor applied at column (j — 1)
increases the bit count of column j by 1. For the special case of
column 0, the situation reduces to the one shown in Eq. (17).
Finally, the bit count in each column of the BM produced
by the final compression stage should be non-negative and no
more than 2, which is modeled by Eq. (18).

We call this formulation of co-optimizing the area and MED
of the approximate CT the optimization mode CoOpt. By
changing the formulation slightly, we can also obtain two other
optimization modes: (i) AreaOpt, which sets the MED D as a



constraint and minimizes the area; (ii) ErrOpt, which sets the
area as a constraint and minimizes the MED D.

B. Optimization of Connection Order

Given the optimized compressor allocation from Sec-
tion III-A, we further minimize the MED of the approximate
CT by optimizing the connection order of all the allocated
Compressors.

Carry output from an exact 2:2 compressor
applied at column\/’-l of BM;,

«To column j
+ of BM,

Zi—lj,4o
Zi-l,/,se

2000600

Bit Column j Pm_Columnj
of BM; of BM;

\‘ To column j+1
of BM;

Fig. 3. Example of connection order.

1
To column j+1
of BM+,

The problem of optimizing the connection order determines
how the bits in the column j of BM; should be connected to
the compressors applied at the column, which are determined
from the allocation method described in Section III-A, for
any ¢ and j. We use Fig. 3 to illustrate the problem and
our basic modelling. Assume that the column of 6 bits in
black circles are those in the column j of BM,. We call
the column bit column. Assume that 1 exact 2:2 compressor
(represented by a solid rectangle) and 1 approximate 3:2
compressor (represented by a dotted rectangle) are applied
at this column. Since these two compressors only handle 5
bits at the column, 1 remaining bit at the column will be
directly passed to the column j of BM; ;. For convenience,
we introduce a dummy compressor. In general, a k-bit dummy
compressor directly forwards its k inputs to its & outputs. For
this example, the dummy compressor, which is represented by
a box “Dum” in the figure, has a single input and output. It
passes bit 4 of the bit column to column j of BM, ;. Including
the dummy one, all the compressors applied at the bit column
have 6 input pins in total. They are shown as a column of grey
circles in Fig. 3. We call the column of all the input pins the
pin column. The connection order problem decides how the
bits of the bit column should connect to the pins of the pin
column. Fig. 3 shows a possible connection order. It can also
be viewed as a bijection between the bit column and the pin
column.

Next, we will present our solution in detail. To formalize
the connection order problem, the order of the bits in the
bit column and that of the pins of the pin column should
be specified. We first describe these orders in Sections III-B1
and III-B2, respectively. Then, we present the modeling of the
bijection in Section III-B3. As the optimization target is MED,
it is critical to improve the MED estimation, which we present

in Section III-B4. Finally, we summarize the optimization
problem in Section III-BS.

1) Order of the Bit Column: Consider an arbitrary bit
column. Assume that it is column j of BM;. There are seven
sources for the bits in the bit column: Sources 1 and 2 are the
carry outputs from the exact 2:2 and 3:2 compressors applied
at column (j — 1) of BM;_1, respectively; Sources 3 and 4
are the sum outputs from the exact 2:2 and 3:2 compressors
applied at column j of BM;_4, respectively; Sources 5 and 6
are the outputs from the approximate 3:2 and 4:2 compressors
applied at column j of BM,;_, respectively; Source 7 is the
outputs of the dummy compressor applied at column j of
BM;_,. From the previous step of optimizing the compressor
allocation, the number of compressors in Source k (1 < k& < 6)
is known. For example, the number of compressors in Source
1is hiflﬁjfl.

The bits in a bit column are arranged in the order from
Source 1 to Source 7. For example, Fig. 3 also shows the
detailed sources for those bits in the bit column. Bit O is the
carry output from an exact 2:2 compressor applied at column
(j — 1) of BM;_; (i.e., Source 1). Bits 1 and 2 are the sum
outputs of two exact 2:2 compressors applied at column j of
BM,_ (i.e., Source 3). Bits 3 and 4 are the outputs of an
approximate 3:2 compressor applied at column j of BM;_;
(i.e., Source 5). Finally, Bit 5 is the output of a dummy
compressor applied at column j of BM;_; (i.e., Source 7).

2) Order of the Pin Column: Consider column j of BM;
for an arbitrary ¢ and j. Generally, there are five types of
compressors applied at the column: Types 1 and 2 are the exact
2:2 and 3:2 compressors, respectively; Types 3 and 4 are the
approximate 3:2 and 4:2 compressors, respectively; Type 5 is
the dummy compressor. From the previous stage of optimizing
the compressor allocation, the numbers of compressors in
Types 1 to 4 are known, which are h; ;, fi ;. pij, and g j,
respectively. The compressors are arranged in the order from
Type 1 to Type 5. Then, the order of the input pins of each
compressor is kept. This gives the order of all the pins of the
pin column. For example, the pins of the pin column shown
in Fig. 3 are ordered following the above rule.

3) Modeling of the Bijection: As we stated above, the
connection order optimization is essentially to determine the
best bijection between a bit column and its corresponding pin
column. Assume that the bit column is column j of BM;. Then,
the sizes of both columns equal V;[j]. We introduce a binary
connection variable b; ;.. (0 < r,¢ < V;[j] — 1) to model
the bijection. It is 1 if and only if bit r of the bit column
connects to pin ¢ of the pin column. Thus, the connection
order optimization essentially solves for b; j . .’s to minimize
the MED of the approximate CT. As each bit of the bit column
connects to exactly one pin of the pin column and vice versa,
bi j,r,c’s should satisfy the following two constraints:

SV e =1, for 0 <7 < Vi[j] — 1,
SVl e =1, for 0 < e < Vi[j] — 1.

19)
(20)

4) Improved MED Estimation: In the previous step of
optimizing the compressor allocation, we estimate the MED
of each approximate compressor by Eqgs. (5) and (6), assuming
that the input probabilities p;’s of each compressor are 0.25.
This leads to a very rough estimation. In this step of optimizing



the connection order, we try to improve the MED estimation
of each approximate compressor. This requires an improved
estimation of the input probabilities of each compressor.
Fortunately, with the help of the connection variables and the
knowledge of the compressor allocation, it is possible. In this
section, we first show a method to improve the estimation to
the input probabilities of the compressors. The basic idea is
to propagate the probabilities from one compression stage to
the next.

For column j (0 < j <2m —2)of BM; (0 <i<s—1),
denote the probability of bit £ (0 < k < V;[j] — 1) of the
column and that of pin k of the corresponding pin column
as y; ;1 and z; j, respectively. Our target is to get z; ;’s.
They are obtained recursively from z; ;x’s, where ¢ < i.
Specifically, we first get y; ; »’s from the related z;_1 ; 1’s and
Zi—1,j—1,& 'S by applying Egs. (1)-(4). Below is an example.

Example 1. Consider the compressor allocation shown in
Fig. 3. By Eq. (1), the probability of the output S of the first
exact 2 : 2 compressor is z; 1 j,0+ 2i—1,j,1 — 2%i—1,j,0%i—1,j,1-
By the ordering of the bit column defined in Section III-BI,
the output S is bit 1 of the bit column. Thus, we have

Yijl = Zi—1,5,0 T Zi—141 — 22i—1,j,0%i—1,j,1- 21

Note that for 1 < k < 5 y; ;1 is calculated from the related
Zi—1,jk 8. For y; j o, since it corresponds to the carry output
of an exact 2 : 2 compressor applied at column (j — 1) of
BM;_, it is calculated from the related z;_1 j_1}’s.

Then, with the help of the connection variables b; ; . .’s, we
can obtain z; ;s from y; ; 1’s as

Vils]-1

Zigk = Z Yijor * bigrk- (22)
r=0

Once z; j1’s are obtained, we can apply Egs. (5) and (6)
to get the MED of each approximate compressor applied
at the column. Then, by a calculation similar to Egs. (10)
and (11), we can get an improved MED estimation of the
entire approximate CT.

5) Optimization Problem and Solution: The entire opti-
mization formulation builds upon the previous components. It
solves the binary connection variables b; ; .. to minimize the
improved MED estimation of the approximate CT. Note the
key variables involve the binary variables b; ;. and the real
variables y; ;. and z; ;. The key constraints involve those
shown in the form of Egs. (5), (6), (19)—(22). The details are
omitted due to space limit. Since Egs. (5), (6), and (21) are
non-linear, the formulation is an MIP, which can be solved by
an MIP solver.

IV. EXPERIMENTAL RESULTS

In this section, we show the experimental results on OPACT.
The MIP solver Gurobi Optimizer 9 [17] was used as the
ILP/MIP solver. We generated the Verilog HDL code for
approximate CTs according to the solutions of our ILP/MIP
problems by MyHDL [18], which was further combined with
the AND gate-based PPGs and the exact CPAs to build
the approximate multipliers. We synthesized the approximate
multipliers by Synopsys Design compiler [16] using Nangate

45nm technology [15] and measured their areas, delays, and
dynamic powers. To measure their accuracy, the error metrics
ER, MED, and MRED described in Section II-A were used.
We set the inputs as uniformly distributed. For the multipliers
with word length m < 12, we enumerated all the input patterns
to obtain the error. Otherwise, we did Monte Carlo simulation
with 224 patterns.

A. Comparison of Single Design

In this section, we compared our proposed compression
scheme with those heuristic ones [11], [12], which give the
state-of-the-art designs using the same approximate compres-
sors with equally weighted outputs as ours. We selected
Kogge-Stone adder as the CPA following [11]. Four word
lengths were considered: m = 8,12, 16, 20. As shown in Sec-
tion III-A, the optimization of compressor allocation has three
modes CoOpt, AreaOpt and ErrOpt with different controlling
parameters w, MED bound, and area bound, respectively.
Different designs can be obtained for each mode by tuning
their parameters. Since our proposed OPACT takes a long
runtime for larger designs (e.g., when m = 20), we set a
runtime bound for optimization as 600s.

For comparison with [11], we first used the design /StepFull
from [11] as a reference. We generated three approximate
multipliers with MED similar to it by the above three modes,
respectively, and then selected the one with the minimal ADP.
We call the design OPACTI. We also produced a design
called OPACT2 by OPACT in the same way using the design
2S8tepsFull from [11] as a reference.2 Furthermore, the AM
designs from [12] are reported to be better than 2StepsFull.
Thus, we also compared OPACT2 with AM. Specifically, we
compared to AMS8-5 and AMI2-7 from [12], which are 8
and 12-bit approximate multipliers, respectively. Following the
method from [12], we also designed AM16-10 and AM20-11,
which are 16 and 20-bit approximate multipliers, respectively.

Table I shows the comparison results on error and hardware
cost, where OPACTI and [StepFull are put in one group
for comparison, while OPACT2, 2StepsFull, and AM are put
in another. In each group, we highlight the best design in
bold for each metric. From the table, we can see that for
the groups with OPACTI, OPACTI has comparable hardware
cost as [StepFull, while its MED is usually smaller. For all
the groups with OPACT2, OPACT?2 are better than the other
two existing designs in MED, area, delay, and power. Based
on the data from Table I, Table II further lists the average
improvement of an OPACT design to the one(s) in the same
group over the 4 word lengths in MED, MRED, ADP, and
PDP. Generally speaking, an OPACT design is better than its
counterpart(s) in both error and hardware cost. The reason is
because our proposed optimized compression scheme typically
utilizes fewer exact compressors and more approximate ones,
while maintaining a higher accuracy.

B. Comparison of Multiple Designs

Our proposed OPACT is able to produce multiple designs
for one word length by tuning the parameters or changing

Note that besides /StepFull and 2StepsFull, two other approximate multi-
pliers are proposed in [11]. However, they apply the approximate compressors
to a truncated multiplier, while we do not. Thus, for a fair comparison, we
did not compare to these two designs.



TABLE I
ERROR AND HARDWARE COST COMPARISON OF APPROXIMATE
MULTIPLIERS.

size multiplier ER/% MED MRED area/um? delay/ns power/uW
OPACT1 23.0 14.6 0.0010 287.0 0.84 43.0
1StepFull 22.0 225 0.0021 292.0 0.82 44.7
OPACT2 50.1 283 0.0163 2149 0.68 27.3
237.0 0.75 31.4

8*8 2StepsFull 49.0 352 0.0190
AMS-5 50.1 283 0.0165 216.8 0.81 27.4
OPACT1 64.3 670 0.0006 719.5 1.10 112.6
1StepFull 36.0 650 0.0005 730.7 1.10 128.6
OPACT2 86.0 2.89E4 0.01 528.0 0.92 65.0
12*#12 2StepsFull 76.3 3.60E4 0.0088 595.6 0.99 88.1
AMI12-7 78.3 2.95E4 0.0097 535.2 0.94 76.7
OPACTI1 89.5 2.34E40.00010 1302.8 1.20 211.9
1StepFull 54.0 2.60E4 0.00011  1311.9 1.19 253.9
OPACT2 97.3 1.07E6 0.0028 950.2 1 125.1
16*16 2StepsFull 91.0 2.60E6 0.0036  1040.3 1.05 165.8
AMI16-10 89.0 1.29E6 0.0027 987.1 1.13 155.3
OPACTI1 96.7 3.14E50.00001  2095.5 1.45 356.3
1StepFull 67.0 8.70E5 0.00002  2116.6 1.33 439.3
20*20 OPACT2 99.0 7.37E7 0.001 1522.6 1.24 189.6
2StepsFull 99.0 3.53E8 0.002  1648.9 1.31 280.1
AM20-11 96.2 8.64E7 0.001 1586.4 1.39 262.3

TABLE II
AVERAGE IMPROVEMENT OF OPACT DESIGNS IN MED, MRED, ADP,

AND PDP.

MED/% MRED/% ADP/% PDP/%

OPACT1 over 1StepFull 26.5 232 —0.7 11.3
OPACT?2 over 2StepsFull 44.4 18.2 15.3 29.2
OPACT2 over AM 8.4 —1.4 124 244

the optimization mode. In this section, we considered the
word length m = 8 and compared a set of designs optimized
by OPACT to that of EvoMult8 [19] in a two-dimensional
space defined using ADP-MED or PDP-MED. EvoMult§ is
a collection of 8-bit approximate multipliers synthesized by
an approximate logic synthesis technique based on an evolu-
tionary algorithm. For the three optimization modes AreaOpt,
ErrOpt, and CoOpt of OPACT, we selected 6 designs for each
of them by tuning their corresponding controlling parameters.
For the EvoMult8, we selected 18 top designs within the
similar MED range as our selected OPACT designs.
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Fig. 4. Comparison in (a) the ADP-MED space and (b) the PDP-MED space
between 8-bit OPACT-optimized designs and EvoMultS designs.

Figs. 4(a) and 4(b) show the comparison between the 8-
bit OPACT designs and the EvoMult§8 designs in the ADP-
MED and the PDP-MED spaces, respectively. Clearly, our 8-
bit OPACT designs dominate the EvoMult8 designs in both
the ADP-MED space and the PDP-MED space. Moreover,
the Pareto frontier of the designs obtained by different op-
timization modes of OPACT is dense, which indicates that

the tuning of the controlling parameters is able to make a
trade-off between the accuracy and the hardware cost at a fine
granularity.

V. CONCLUSION

In this work, we propose OPACT, a novel technique for
optimizing the approximate compressor tree for approximate
multipliers. It consists of two stages: (i) optimizing the
compressor allocation in the approximate CT; (ii) optimizing
the connection order of these allocated compressors, aimed
at minimizing the MED. Approximate multipliers optimized
by OPACT have a lower PDP than the state-of-the-art ap-
proximate multipliers, while maintaining a smaller MED. We
note that in the current MED estimation, it is based on an
assumption that the inputs to a compressor are independent,
which is not necessarily true. A future direction is to further
take the correlation among the inputs into account.
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