
Efficient Approximate Decomposition Solver using Ising Model
Weihua Xiao

UM-SJTU Joint Inst.

Shanghai Jiao Tong University

Shanghai, China

019370910014@sjtu.edu.cn

Tingting Zhang

Department of Electrical & Computer

Engineering

University of Alberta

Edmonton, Canada

ttzhang@ualberta.ca

Xingyue Qian

UM-SJTU Joint Inst.

Shanghai Jiao Tong University

Shanghai, China

qianxingyue@sjtu.edu.cn

Jie Han

Department of Electrical & Computer

Engineering

University of Alberta

Edmonton, Canada

jhan8@ualberta.ca

Weikang Qian

UM-SJTU Joint Inst.

Shanghai Jiao Tong University

Shanghai, China

qianwk@sjtu.edu.cn

Abstract
Computing with memory is an energy-efficient computing ap-

proach. It pre-computes a function and store its values in a lookup ta-

ble (LUT), which can be retrieved at runtime. Approximate Boolean

decomposition reduces the LUT size for implementing complex

functions, but it takes a long time to find a decomposition with a

minimal error. As a parallel algorithm developed for the Ising model,

simulated bifurcation (SB) shows a potential as a high-performance

approach for combinatorial optimization. In this paper, we pro-

pose an efficient SB-based approximate function decomposition

approach. Specifically, a new approximate disjoint decomposition

method, called column-based approximate disjoint decomposition,

is first proposed to fit the Ising model. Then, it is adapted to the

Ising model-based optimization solver. Moreover, two improvement

techniques are developed for an efficient search of the approximate

disjoint decomposition when using SB. Experimental results show

that compared to the state-of-the-art work, our approach achieves

a 11% smaller mean error distance with an average 1.16× speedup

when approximately decomposing 16-input 16-output Boolean func-

tions.

Keywords
Approximate decomposition, Simulated bifurcation, Approximate

lookup table, Ising model, Ising machine

1 Introduction
Computing with memory is one of the most effective low-power

techniques for building hardware accelerators for computational-

intensive applications. For this approach, the frequently used Boolean

functions are first computed, and then the results are stored in

lookup tables (LUTs). The Boolean function can be computed at

runtime by reading the LUT depending on the inputs [1]. However,

when implementing complex functions, the exponential increase of

the LUT sizes with the number of input bits incurs a high hardware

cost. To address this issue, a low-hardware-cost design paradigm,

approximate computing, has been applied in implementing complex

functions in LUTs with a reduced size at a cost of acceptable errors

for error-tolerant applications [2].

Figure 1: Reducing LUT size based on disjoint Boolean de-
composition.

Existing approximate LUT designs can be categorized into three

classes. The first class relies on Taylor approximation of func-

tions [3, 4]. However, it cannot deal with non-continuous functions.

The second class is based on approximate input pattern match-

ing [5, 6]. However, additional hardware is required to obtain exact

results when input pattern matching fails. The third one is devel-

oped based on disjoint Boolean decomposition, or disjoint decomposi-
tion for brevity [7]. For example, as shown in Fig. 1, a 32-bit LUT is

needed to store a Boolean function 𝑓 with 5 inputs. Suppose that a

disjoint decomposition (details will be introduced in Section 2.2) can

be applied to 𝑓 , which decomposes 𝑓 into two smaller functions𝐺

and𝐻 such that 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝐻 (𝐺 (𝑥1, 𝑥2, 𝑥3), 𝑥4, 𝑥5). With

such a decomposition, we can store 𝑓 in two smaller LUTs with 16

bits in total, which leads to 2× reduction in the size of LUTs. How-

ever, the disjoint decomposition can only be applied to a Boolean

function satisfying some special conditions [7]. The approximate

disjoint decomposition is proposed to introduce approximation into

an unsatisfying Boolean function, such that it can have a disjoint

decomposition [8, 9].

In [9], a framework DALTA is proposed for approximate disjoint

decomposition of multi-output Boolean functions. In [10], DALTA
is improved based on the simulated annealing algorithm and the

framework is extended to support the non-disjoint decomposition.

Both frameworks rely on solving a key combinatorial optimization

problem (COP) that aims at minimizing the introduced error due to

approximate disjoint decomposition. Meng et al. formulate the COP

as an integer linear programming (ILP) problem and further solve it

by an ILP solver [9]. However, it suffers from a poor scalability as the

solution space grows exponentially with the number of input bits

DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA Weihua Xiao, Tingting Zhang, Xingyue Qian, Jie Han, and Weikang Qian

of the function, a common problem in solving general COPs [11].

To address the scalability issue, a heuristic method is proposed for

solving the COP [9]. However, the method sacrifices the optimality

of the solution. Thus, how to search the large solution space of this

COP to obtain a good trade-off between the efficiency and solution

quality remains as an open problem.

For efficient search in the solution space of COPs, Ising model-
based solvers have recently attracted a growing interest. The Ising

model mathematically emulates the energy of a physical system

constructed by magnetic spins with two states, denoted as −1 and

1 [12]. The interactions among the spins and bias on the spins affect

the spin states. The spin states that lead to the minimized energy

of the system provide the solution of a given COP. Solving a COP

using the Ising model involves two key steps: (1) Ising formulation,

which maps the given COP into the Ising model, and (2) solution

search, which finds the spin states by decreasing the energy of the

system. For the second step, various algorithms have been devel-

oped [13], including simulated annealing [14] and simulated bifurca-
tion (SB) [15]. Compared with simulated annealing, which requires

the sequential update of the connected spins, the SB algorithm

updates the spin states in parallel [15]. This advantage motivates re-

search on the applications of SB in real-time optimization systems,

such as stock trading systems [16], routing, and scheduling [17].

In this work, we propose a high-performance Ising model-based

approximate disjoint decomposition approach to aid the design of

approximate LUTs. The main contributions are as follows.

(1) A new approximate disjoint decomposition approach, re-

ferred to as column-based approximate disjoint decomposition,
is proposed to suit the Ising model;

(2) Ising formulations of the column-based approximate disjoint

decomposition in two decomposition modes are developed

to adapt to the second-order Ising model;

(3) Two advanced strategies are developed for approximate dis-

joint decomposition using SB: dynamic stop criteria to iden-

tify if the system becomes steady by monitoring the variance

of the system’s energy during the search, and a heuristic to

improve the search quality by pre-calculating some variable

values before each update iteration of SB.

The experiment results show that compared to the state-of-the-

art method [9], this approach achieves a 11% smaller mean error

distance with an average 1.16× speedup when approximately de-

composing 16-input 16-output Boolean functions.

In the remainder of this paper, Section 2 introduces some pre-

liminaries. The Ising model-based approximate decomposition is

discussed in Section 3. Then, the experiment results are reported in

Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries
2.1 Ising Model and Simulated Bifurcation
The Ising model describes the energy of a physical system with

𝑁 spins. The states of the 𝑁 spins are denoted by a vector 𝝈 =

(𝜎1, . . . , 𝜎𝑁), where 𝜎𝑖 ∈ {−1, +1} (1 ≤ 𝑖 ≤ 𝑁) denotes the state

of the 𝑖-th spin. The energy of the system, denoted by 𝐸 (𝝈), is
calculated by the following second-order polynomial using spin

variables (by 𝝈 ∈ {−1, +1}𝑁), given by [18]:

𝐸 (𝝈) = −∑𝑁
𝑖=1

ℎ𝑖𝜎𝑖 − 1

2

∑𝑁
𝑖=1

∑𝑁
𝑗=1

𝐽𝑖, 𝑗𝜎𝑖𝜎 𝑗 , (1)

where ℎ𝑖 (1 ≤ 𝑖 ≤ 𝑁) is the bias on 𝜎𝑖 and 𝐽𝑖, 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑁) is the

coefficient between 𝜎𝑖 and 𝜎 𝑗 . Note that 𝐽𝑖,𝑖 = 0 and 𝐽𝑖, 𝑗 = 𝐽 𝑗,𝑖 .

An efficient Ising model solver is based on SB, which simulates

the behavior of each spin in Ising model by an oscillator. It numeri-

cally describes the bifurcation phenomena and adiabatic processes

in an oscillator network [15]. SB benefits from massive parallelism

in computation, which simultaneously updates all the spins. The

approximate solution, i.e., the spin state, is obtained by solving pairs
of differential equations related to the positions and momenta of

oscillators [15]. Euler integration is applied to solve the differential

equations, which iteratively updates the position values [19]. After

a fixed number of iterations, the spin state indicated by the sign of

position values provides a solution. This paper applies the recently

proposed high-performance ballistic SB (bSB) [20] to solve Ising

model-based problems.

2.2 Row-based Disjoint Decomposition
Definition 1. Let 𝑔 be a Boolean function of 𝑛 input bits, denoted

by 𝑿 = (𝑥1, · · · , 𝑥𝑛). Let𝑤 = {𝑨,𝑩} be a partition on 𝑿 , such that
𝑨 ∪ 𝑩 = 𝑿 and 𝑨 ∩ 𝑩 = ∅. For simplicity, we call 𝑤 the input
partition. The function is said to have a disjoint decomposition over
the input partition𝑤 = {𝑨,𝑩} if there exist functions 𝜙 and 𝐹 , such
that 𝑔(𝑿) = 𝐹 (𝜙 (𝑩),𝑨), where𝑨 is called the free set and 𝑩 is called
the bound set.

In [7], a necessary and sufficient condition is proposed for a

Boolean function 𝑔(𝑿) to have a disjoint decomposition over a

given input partition𝑤 = {𝑨,𝑩}. The condition is proposed based

on a matrix representation of the Boolean function’s truth table

under a given input partition, called the Boolean matrix, which uses

the variables in 𝑨 (resp. 𝑩) to define the rows (resp. columns). The

condition is as follows [7]:

Theorem 1. (Row-based Decomposition) A Boolean function 𝑓

has a disjoint decomposition over an input partition {𝐴, 𝐵}, if and
only if the corresponding Boolean matrix has at most the following
four distinct types of rows: 1) a pattern of all 0s; 2) a pattern of all 1s;
3) a fixed pattern 𝑽 of 0’s and 1’s; 4) the complement of 𝑽 .

To find a disjoint decomposition of a Boolean function 𝑔(𝑿) is
equivalent to determining three factors [9, 10]: 1) the input partition

𝑤 = {𝑨,𝑩}; 2) the fixed row pattern 𝑽 , which consists of 2
|𝑩 |

bits;

3) the row type vector 𝑺 , which has 2
|𝑨|

elements, and each element

𝑆𝑖 ∈ {1, 2, 3, 4} (1 ≤ 𝑖 ≤ 2
|𝑨|) represents the type of the 𝑖-th row in

the corresponding Boolean matrix. We denote the tuple (𝑤, 𝑽 , 𝑺)
as the setting of a row-based disjoint decomposition. The functions

𝜙 and 𝐹 can be obtained from the vectors 𝑽 and 𝑺 , respectively.

Example 1. Given an input partition with 𝑨 = {𝑥1, 𝑥2} and 𝑩 =

{𝑥3, 𝑥4}, the corresponding Boolean matrix of Boolean function 𝑓 is
shown in Fig. 2. It has four different types of rows with 𝑽 = (1, 1, 0, 0)
and 𝑺 = (3, 1, 2, 4). Thus, its corresponding Boolean function has a
disjoint decomposition with free set {𝑥1, 𝑥2} and bound set {𝑥3, 𝑥4}.
The truth table of function 𝜙 is given by 𝑽 and thus 𝜙 (𝑥3, 𝑥4) = 𝑥3.
The function 𝐹 is derived from 𝑺 as 𝐹 (𝜙 (𝑥3, 𝑥4), 𝑥1, 𝑥2) = 𝜙𝑥1𝑥2 +
𝑥1𝑥2 + ¯𝜙𝑥1𝑥2.

Efficient Approximate Decomposition Solver using Ising Model DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA

𝒙𝟑𝒙𝟒
𝒙𝟏𝒙𝟐 00 01 10 11

00 1 1 0 0

01 0 0 0 0

10 1 1 1 1

11 0 0 1 1

V

S=
 (

3

1

2

4)

V1 V2

T = (0 0 1 1)

Figure 2: A Boolean matrix of a Boolean function with a
disjoint decomposition.

2.3 Row-based Approximate Disjoint
Decomposition

However, the conditions in Theorem 1 is hard to be satisfied for an

arbitrary Boolean function 𝑔(𝑿) over a given input partition𝑤 . To

tackle the unsatisfactory case, researchers approximate 𝑔(𝑿) into
𝑔(𝑿), such that𝑔(𝑿) has a disjoint decomposition [8–10]. More gen-

erally, amulti-output Boolean function𝑮 (𝑿) = (𝑔1 (𝑿), . . . , 𝑔𝑚 (𝑿))
can be approximated into �̂� (𝑿) = (𝑔1 (𝑿), . . . , 𝑔𝑚 (𝑿)), such that

each component function 𝑔𝑘 (𝑿) (1 ≤ 𝑘 ≤ 𝑚) has a disjoint decom-

position. Thus, we have to determine the setting (𝑤𝑘 , 𝑽𝑘 , 𝑺𝑘) for
each function 𝑔𝑘 (𝑿). However, different settings correspond to

different approximations of Boolean functions, leading to different

errors. The approximate disjoint decomposition is to derive the op-

timal setting for each component function to minimize the overall

error. In this work, two types of metrics are used to measure the

error: error rate (ER), which is the probability that an input pattern

produces a wrong output for the approximate function, and mean
error distance (MED), which measures the average deviation of the

output binary encoding, calculated as:

𝑀𝐸𝐷 (𝑮, ˆ𝑮) = ∑
𝑿 𝑝𝑿 |𝐵𝑖𝑛(𝑮 (𝑿)) − 𝐵𝑖𝑛(ˆ𝑮 (𝑿)) |, (2)

where 𝑝𝑿 is the occurrence probability of input pattern 𝑿 , and

𝐵𝑖𝑛(𝑾) is the binary number encoded by the Boolean vector𝑾 .

2.4 Core COP of Row-based Approximate
Disjoint Decomposition

We focus on themore general multi-output Boolean functions in this

paper. In [9], a framework DALTA is proposed for the approximate

disjoint decomposition over multi-output Boolean functions, on

which our proposed approximate decomposition solver is based. In-

stead of simultaneously deriving the optimal settings (𝑤𝑘 , 𝑽𝑘 , 𝑺𝑘)’s
for all component functions 𝑔𝑘 ’s, it optimizes the setting of each in-

dividually. This process is carried out sequentially, starting from the

most significant bit to the least significant bit, and it is repeated for

𝑅 rounds. However, the searching space of the setting (𝑤𝑘 , 𝑽𝑘 , 𝑺𝑘)
is large, which is hard to be optimized directly. DALTA randomly

generates 𝑃 candidate partitions 𝑤𝑘 ’s and then optimizes 𝑽𝑘 and

𝑺𝑘 for each partition to minimize the introduced error. Thus, the

core problem of the framework is a COP that optimizes 𝑽𝑘 and 𝑺𝑘
given a partition 𝑤𝑘 , called row-based core COP. There exist two
modes for solving row-based core COP:

• Separate mode: finding a setting (𝑽𝑘 , 𝑺𝑘) to minimize the

introduced ER for the current component function;

• Joint mode: finding a setting (𝑽𝑘 , 𝑺𝑘) to minimize the intro-

duced MED of all Boolean functions, which is computed by

fixing all the other Boolean functions to their accurate ver-

sions if they have not been optimized yet in the first round,

or their latest approximated versions otherwise.

3 Ising Model-based Approximate Disjoint
Decomposition

In this section, we develop an Ising model-based solver for the

core COP in the approximate disjoint decomposition. Instead of

the row-based approximate disjoint decomposition, we propose a

column-based approximate disjoint decomposition in Section 3.1,

which is more friendly to the Ising model. Moreover, we introduce

the column-based core COP. Section 3.2 then presents how to map

the column-based core COP into an Ising model. For efficiently

solving the COP by bSB, Section 3.3 proposes two improvement

techniques.

3.1 Column-based Approximate Disjoint
Decomposition

In [9], the row-based core COP is formulated as a constrained ILP

problem. However, this formulation has a bad scalability. To solve

the above issue, we resort to Ising model-based solver. However,

our study finds that to solve a row-based core COP by an Ising

model requires a third-order Ising model, which is more complex

than the second-order Ising model shown in Eq. (1). To address this

issue, we resort to another necessary and sufficient condition for

disjoint decomposition as follows [7]:

Theorem 2. (Column-based Decomposition) Let {𝑨,𝑩} be a
partition on 𝑿 . A Boolean function 𝑓 has a disjoint decomposition
over {𝑨,𝑩}, if and only if its Boolean matrix with variables in sets 𝑨
and 𝑩 defining rows and columns, respectively, has at most two types
of columns.

For example, the Boolean matrix in Fig. 2, whose corresponding

Boolean function has a disjoint decomposition shown in Example 1,

has two types of columns, (1, 0, 1, 0) and (0, 0, 1, 1).
Based on Theorem 2, we propose a column-based approximate

disjoint decomposition. Consider a multi-output Boolean function,

and assume that the 𝑘-th (1 ≤ 𝑘 ≤ 𝑚) component function 𝑔𝑘 is

represented by a Boolean matrix with 𝑟 = 2
|𝐴 |

rows and 𝑐 = 2
|𝐵 |

columns. Denote the exact (resp. approximate) value at the 𝑖-th

(1 ≤ 𝑖 ≤ 𝑟) row and the 𝑗-th (1 ≤ 𝑗 ≤ 𝑐) column in the Boolean

matrix of the 𝑘-th component function as 𝑂𝑘𝑖 𝑗 (resp. �̂�𝑘𝑖 𝑗).

To find a column-based disjoint decomposition for component

function 𝑔𝑘 is equivalent to determining a setting represented as

(𝑤𝑘 , 𝑽𝑘1
, 𝑽𝑘2

, 𝑻𝑘), where𝑤𝑘 is an input partition, 𝑽𝑘1
= (𝑉𝑘11

, . . . ,

𝑉𝑘1𝑟) ∈ {0, 1}𝑟 is the column pattern 1, 𝑽𝑘2
= (𝑉𝑘21

, . . . ,𝑉𝑘2𝑟) ∈
{0, 1}𝑟 is the column pattern 2, and 𝑻𝑘 = (𝑇𝑘1

, . . . ,𝑇𝑘𝑐) ∈ {0, 1}𝑐 is
the column type vector. Note that 𝑇𝑘 𝑗 = 0 (resp. 1) means that the

𝑗-th column equals column pattern 1 (resp. 2). For example, for the

Boolean matrix in Fig. 2, we have 𝑽𝑘1
= (1, 0, 1, 0), 𝑽𝑘2

= (0, 0, 1, 1),
and 𝑻𝑘 = (0, 0, 1, 1).

For the column-based approximate disjoint decomposition, our

target is to find an optimized setting (𝑤𝑘 , 𝑽𝑘1
, 𝑽𝑘2

, 𝑻𝑘) for 𝑔𝑘 to

minimize the total error. The corresponding column-based core COP
is to optimize 𝑽𝑘1

, 𝑽𝑘2
, and 𝑻𝑘 under a given input partition 𝑤𝑘 .

Clearly, the column-based core COP has (2𝑟 + 𝑐) binary variables.

DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA Weihua Xiao, Tingting Zhang, Xingyue Qian, Jie Han, and Weikang Qian

1(1) 1(0) 1(1) 1(1)

0(1) 1(1) 0(0) 1(1)

0(0) 0(0) 0(0) 0(0)

1(1) 1(1) 1(1) 1(1)

?(0) ?(1) ?(1) ?(1)

?(0) ?(1) ?(1) ?(0)

?(1) ?(1) ?(0) ?(1)

?(1) ?(1) ?(1) ?(1)

0(0) 0(0) 0(1) 0(0)

0(0) 1(1) 1(1) 1(1)

0(0) 1(1) 1(0) 1(1)

1(1) 0(1) 0(0) 0(0)

x1
x2

x3x4

x2
x3

x1x4

x3
x4

x1x2

k=1 k=2 k=3V11 V12

T1=(0, 1, 0, 1)

V31 V32

T3=(0, 1, 1, 1)

Figure 3: An example of the approximate disjoint decompo-
sition for a 3-output Boolean function. A value inside (resp.
outside) parentheses represents the exact (resp. approximate)
value of the Boolean function.

The approximate value �̂�𝑘𝑖 𝑗 satisfies that

�̂�𝑘𝑖 𝑗 = (1 −𝑇𝑘 𝑗)𝑉𝑘1𝑖 +𝑇𝑘 𝑗𝑉𝑘2𝑖 . (3)

Example 2. In Fig. 3, it shows an example of the column-based
disjoint decomposition for a 3-output Boolean function. The column-
based decomposition settings of the first and third component functions
have been determined. For example,𝑤1 of the first component function
is {{𝑥1, 𝑥2}, {𝑥3, 𝑥4}}. In its corresponding Boolean matrix (leftmost),
a value inside (resp. outside) parentheses at the 𝑖-th row and 𝑗-th col-
umn represents the exact (resp. approximate) value of the component
function under the corresponding input pattern, i.e.,𝑂𝑘𝑖 𝑗 (resp. �̂�𝑘𝑖 𝑗).
Note that an �̂�𝑘𝑖 𝑗 is marked in red if �̂�𝑘𝑖 𝑗 ≠ 𝑂𝑘𝑖 𝑗 . Its two column
pattern vectors are 𝑉11 = (1, 0, 0, 1) and 𝑉12 = (1, 1, 0, 1), and the cor-
responding type vector is 𝑇1 = (0, 1, 0, 1). Similarly, 𝑉31, 𝑉32, and 𝑇3

are shown for the third component function under the input partition
𝑤3 = {{𝑥3, 𝑥4}, {𝑥1, 𝑥2}}. The approximate values are unknown of
the second component function, marked by ?. We have to determine
𝑉21, 𝑉22, and 𝑇2 under the partition𝑤2 = {{𝑥2, 𝑥3}, {𝑥1, 𝑥4}}.

3.2 Ising Formulation of Column-based Core
COP

This section shows the formulation of the column-based core COP

as an Ising model. Sections 3.2.1 and 3.2.2 consider separate-mode

and joint-mode approximate decompositions, respectively.

3.2.1 Ising Formulation of Column-based Core COP under the Sep-
arate Mode Under the separate mode, each of the𝑚 component

functions is treated separately. Consequently, the target is to min-

imize the ER of the approximate disjoint decomposition for each

function. Consider the approximate decomposition of the 𝑘-th com-

ponent function as an example. Denote the probability of the input

pattern corresponding to the 𝑖-th row and the 𝑗-th column in the

Boolean matrix for the 𝑘-th component function as 𝑝𝑘𝑖 𝑗 . The objec-

tive is to minimize the ER [9]:

min

∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗 |�̂�𝑘𝑖 𝑗 −𝑂𝑘𝑖 𝑗 |, (4)

where �̂�𝑘𝑖 𝑗 is given in Eq. (3).

To solve the above COP using the Ising model, Eq. (4) need to fit

in the formulation as in Eq. (1). Let 𝐸𝐷𝑘𝑖 𝑗 = |�̂�𝑘𝑖 𝑗 −𝑂𝑘𝑖 𝑗 |, where
1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑟 , and 1 ≤ 𝑗 ≤ 𝑐 . We first transform 𝐸𝐷𝑘𝑖 𝑗 to

avoid the use of absolute operation. Since �̂�𝑘𝑖 𝑗 and the known𝑂𝑘𝑖 𝑗

are either 0 or 1, we have

𝐸𝐷𝑘𝑖 𝑗 =

{
�̂�𝑘𝑖 𝑗 if 𝑂𝑘𝑖 𝑗 = 0,

1 − �̂�𝑘𝑖 𝑗 if 𝑂𝑘𝑖 𝑗 = 1.
(5)

Thus, 𝐸𝐷𝑘𝑖 𝑗 can be rewritten as

𝐸𝐷𝑘𝑖 𝑗 = (1 −𝑂𝑘𝑖 𝑗)�̂�𝑘𝑖 𝑗 +𝑂𝑘𝑖 𝑗 (1 − �̂�𝑘𝑖 𝑗) . (6)

Hence, by replacing |�̂�𝑘𝑖 𝑗 −𝑂𝑘𝑖 𝑗 | in Eq. (4) by 𝐸𝐷𝑘𝑖 𝑗 in Eq. (6),

Eq. (4) is rewritten as

min

∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗 (𝑂𝑘𝑖 𝑗 + (1 − 2𝑂𝑘𝑖 𝑗)�̂�𝑘𝑖 𝑗). (7)

Note that the only unknowns in Eq. (7) are �̂�𝑘𝑖 𝑗 , which, by

Eq. (3), depends on variables𝑇𝑘 𝑗 ,𝑉𝑘1𝑖 , and𝑉𝑘2𝑖 ∈ {0, 1}. In order to

formulate the minimization problem as an Ising model, the binary

variables 𝑇𝑘 𝑗 , 𝑉𝑘1𝑖 , and 𝑉𝑘2𝑖 are converted to the spin variables 𝑇𝑘 𝑗 ,
𝑉𝑘1𝑖 , and 𝑉𝑘2𝑖 in {−1, +1} using linear transformation, satisfying

𝑇𝑘 𝑗 =
𝑇𝑘 𝑗+1

2
, 𝑉𝑘1𝑖 =

𝑉𝑘1𝑖+1

2
, and 𝑉𝑘2𝑖 =

𝑉𝑘2𝑖+1

2
. Then, Eq. (3) is

reformulated using spin variables as

�̂�𝑘𝑖 𝑗 =
1

2
+ 𝑉𝑘1𝑖+𝑉𝑘2𝑖−𝑇𝑘 𝑗𝑉𝑘1𝑖+𝑇𝑘 𝑗𝑉𝑘2𝑖

4
. (8)

In total,𝑁 = 2𝑟+𝑐 spin variables are required for each component

function. Then, with the constant terms omitted, the COP in Eq. (7)

is expressed by a second-order Ising formulation using the spin

variables in Eq. (8) as follows:

𝐸 ({𝑇𝑘 𝑗 }, {𝑉𝑘1𝑖 }, {𝑉𝑘2𝑖 })

=

∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗 (1−2𝑂𝑘𝑖 𝑗) (�̄�𝑘1𝑖+�̄�𝑘2𝑖−𝑇𝑘 𝑗 �̄�𝑘1𝑖+𝑇𝑘 𝑗 �̄�𝑘2𝑖)
4

=
∑𝑟

𝑖=1
(∑𝑐

𝑗=1

𝑝𝑘𝑖 𝑗 (1−2𝑂𝑘𝑖 𝑗)
4

)𝑉𝑘1𝑖 +
∑𝑟

𝑖=1
(∑𝑐

𝑗=1

𝑝𝑘𝑖 𝑗 (1−2𝑂𝑘𝑖 𝑗)
4

)𝑉𝑘2𝑖

−∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗 (1−2𝑂𝑘𝑖 𝑗)
4

𝑇𝑘 𝑗𝑉𝑘1𝑖 +
∑𝑟

𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗 (1−2𝑂𝑘𝑖 𝑗)
4

𝑇𝑘 𝑗𝑉𝑘2𝑖 .

(9)

3.2.2 Ising Formulation of Column-based Core COP under the Joint
Mode The separate mode ignores the different significance of out-

put bits and hence, may cause a large error. To reduce the error,

the joint-mode decomposition is proposed in [9], which considers

the different significance of the component functions. This section

discusses the more general cases except for the first round, i.e., all

the component functions have been approximately decomposed.

The treatment for the first round is similar with some changes to

the coefficients.

Assume that the current optimization is performed on the Boolean

matrix for the 𝑘-th component function. Since inputs can be par-

titioned in different ways among different component functions,

for the 𝑙-th (𝑙 ≠ 𝑘) component function, we use 𝑖𝑙 and 𝑗𝑙 to index

the known Boolean value (�̂�𝑙𝑖𝑙 𝑗𝑙) for the input pattern correspond-

ing to the 𝑖-th row and 𝑗-th column in the Boolean matrix for the

𝑘-th component function. The objective is to minimize the MED

between the exact and approximate𝑚-bit outputs as follows [9]:

min

∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗𝐸𝐷𝑘𝑖 𝑗 , (10)

where

𝐸𝐷𝑘𝑖 𝑗 = |2𝑘−1�̂�𝑘𝑖 𝑗 +
∑𝑚
𝑙=1,𝑙≠𝑘

2
𝑙−1�̂�𝑙𝑖𝑙 𝑗𝑙 −

∑𝑚
𝑙=1

2
𝑙−1𝑂𝑙𝑖𝑙 𝑗𝑙 |,(11)

where �̂�𝑘𝑖 𝑗 ’s are the only unknowns, which are given by Eq. (3).

Next, we use an example to illustrate how to compute 𝐸𝐷𝑘𝑖 𝑗 ,

where 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑟 , and 1 ≤ 𝑗 ≤ 𝑐 .

Example 3. Consider the example shown in Fig. 3. We aim at
computing 𝐸𝐷213 in the second Boolean matrix in Fig. 3. The corre-
sponding input pattern is (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (1, 0, 0, 0). According to
the input pattern, we can derive (𝑖1, 𝑗1) = (3, 1) and (𝑖3, 𝑗3) = (1, 3).
Thus, 𝐸𝐷213 = |2�̂�213+ (1 ·0+4 ·0) − (1 ·0+2 ·1+4 ·1) | = |2�̂�213−6|.

Efficient Approximate Decomposition Solver using Ising Model DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA

Let 𝐷𝑘𝑖 𝑗 =
∑𝑚
𝑙=1,𝑙≠𝑘

2
𝑙−1�̂�𝑙𝑖𝑙 𝑗𝑙 −

∑𝑚
𝑙=1

2
𝑙−1𝑂𝑙𝑖𝑙 𝑗𝑙 . Then, 𝐸𝐷𝑘𝑖 𝑗 =

|2𝑘−1�̂�𝑘𝑖 𝑗 +𝐷𝑘𝑖 𝑗 |. Similarly, in order to adapt the Ising formulation,

𝐸𝐷𝑘𝑖 𝑗 needs to be further simplified to avoid the use of absolute

operation. We distinguish two cases on 𝐸𝐷𝑘𝑖 𝑗 as follows:

• When −2
𝑘−1 ≤ 𝐷𝑘𝑖 𝑗 ≤ 0, we have

𝐸𝐷𝑘𝑖 𝑗 =

{
−𝐷𝑘𝑖 𝑗 , if �̂�𝑘𝑖 𝑗 = 0,

2
𝑘−1�̂�𝑘𝑖 𝑗 + 𝐷𝑘𝑖 𝑗 , if �̂�𝑘𝑖 𝑗 = 1.

Thus, we have

𝐸𝐷𝑘𝑖 𝑗 = (2𝑘−1�̂�𝑘𝑖 𝑗 + 𝐷𝑘𝑖 𝑗)�̂�𝑘𝑖 𝑗 − 𝐷𝑘𝑖 𝑗 (1 − �̂�𝑘𝑖 𝑗) . (12)

Since �̂�𝑘𝑖 𝑗 is a binary value, we have �̂�2

𝑘𝑖 𝑗
= �̂�𝑘𝑖 𝑗 . Thus

Eq. (12) can be further rewritten as

𝐸𝐷𝑘𝑖 𝑗 = (2𝑘−1 + 2𝐷𝑘𝑖 𝑗)�̂�𝑘𝑖 𝑗 − 𝐷𝑘𝑖 𝑗 . (13)

• When 𝐷𝑘𝑖 𝑗 < −2
𝑘−1

or 𝐷𝑘𝑖 𝑗 > 0, we have

𝐸𝐷𝑘𝑖 𝑗 =

{
2
𝑘−1�̂�𝑘𝑖 𝑗 + 𝐷𝑘𝑖 𝑗 𝐷𝑘𝑖 𝑗 > 0

−2
𝑘−1�̂�𝑘𝑖 𝑗 − 𝐷𝑘𝑖 𝑗 𝐷𝑘𝑖 𝑗 < −2

𝑘−1
. (14)

Equivalently, we have

𝐸𝐷𝑘𝑖 𝑗 = 2
𝑘−1𝑠𝑔𝑛(𝐷𝑘𝑖 𝑗)�̂�𝑘𝑖 𝑗 + 𝐷𝑘𝑖 𝑗𝑠𝑔𝑛(𝐷𝑘𝑖 𝑗) . (15)

Thus, based on different values of 𝐷𝑘𝑖 𝑗 , which is known, we can

replace each 𝐸𝐷𝑘𝑖 𝑗 in Eq. (10) by either Eq. (13) or Eq. (15), which

are linear equations on �̂�𝑘𝑖 𝑗 . We further replace each �̂�𝑘𝑖 𝑗 by Eq. (8)

and drop the constant terms. Finally, we can rewrite Eq. (10) as the

following second-order Ising formulation with spin variables 𝑇𝑘 𝑗 ,

𝑉𝑘1𝑖 , and 𝑉𝑘2𝑖 :

𝐸 ({𝑇𝑘 𝑗 }, {𝑉𝑘1𝑖 }, {𝑉𝑘2𝑖 })

=

∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗𝑞𝑘𝑖 𝑗 (�̄�𝑘1𝑖+�̄�𝑘2𝑖−𝑇𝑘 𝑗 �̄�𝑘1𝑖+𝑇𝑘 𝑗 �̄�𝑘2𝑖)
4

=
∑𝑟

𝑖=1
(∑𝑐

𝑗=1

𝑝𝑘𝑖 𝑗𝑞𝑘𝑖 𝑗
4

)𝑉𝑘1𝑖 +
∑𝑟

𝑖=1
(∑𝑐

𝑗=1

𝑝𝑘𝑖 𝑗𝑞𝑘𝑖 𝑗
4

)𝑉𝑘2𝑖

−∑𝑟
𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗𝑞𝑘𝑖 𝑗
4

𝑇𝑘 𝑗𝑉𝑘1𝑖 +
∑𝑟

𝑖=1

∑𝑐
𝑗=1

𝑝𝑘𝑖 𝑗𝑞𝑘𝑖 𝑗
4

𝑇𝑘 𝑗𝑉𝑘2𝑖 ,

(16)

where 𝑞𝑘𝑖 𝑗 equals (2𝑘−1 + 2𝐷𝑘𝑖 𝑗) if −2
𝑘−1 ≤ 𝐷𝑘𝑖 𝑗 ≤ 0, and

2
𝑘−1𝑠𝑔𝑛(𝐷𝑘𝑖 𝑗) otherwise.

3.3 Improvement Strategies for bSB-based
Approximate Disjoint Decomposition

3.3.1 Dynamic Stop Criteria When using bSB to solve a COP, a

question is how many iterations the Euler integration requires.

The most common way is to choose a fixed number of iterations,

as described in Section 2.1. However, since there is no explicit re-

lationship found between solution convergence and the number

of iterations, we cannot guarantee that each spin has reached its

steady state after Euler integration using a given number of itera-

tions. Therefore, a dynamic stop approach is proposed to instruct

when to stop the Euler integration in bSB. It has two steps:

(1) Sample the energy for every 𝑓 iterations, and at each sam-

pling time, compute the variance on the last 𝑠 sampled ener-

gies.

(2) Stop the Euler integration of bSB if the variance value is

smaller than a predefined threshold 𝜖; otherwise, continue

the integration.

3.3.2 A Heuristic to Intervene State Update of bSB This section

proposes a heuristic to intervene the state update of parts of spins.

Its purpose is to improve the results of bSB. Before introducing

the heuristic, we first have the following straightforward claim on

solving a variant of the column-based core COP with given 𝑽𝑘1
and

𝑽𝑘2
.

Theorem 3. When solving a column-based core COP with given
𝑽𝑘1

and 𝑽𝑘2
, the optimal 𝑻𝑘 should satisfy that for each column, the

column pattern vector with a smaller error is selected.

The proposed heuristic is based on an observation that the col-

umn type vector 𝑻𝑘 is often not optimal corresponding to the col-

umn pattern vectors in each sampled solution. Our heuristic is to

reset the column type vector in each sampled solution as the op-

timal one given by Theorem 3, which is subsequently fed back to

bSB for further optimization.

4 Experimental Results
This section presents the experimental results. The approximate dis-

joint decomposition methods are implemented in C++. The matrix

and vector computation in the bSB solver are implemented using

Eigen library in C++ [21]. We use Gurobi [22] as the ILP solver.

All the experiments are conducted on a computer with a 16-core

1.9GHz AMD Ryzen 7 5800U processor and 16GB RAM.

The performance of approximate joint decomposition are eval-

uated over benchmarks in [9], including six continuous functions

(𝑐𝑜𝑠 (𝑥), 𝑡𝑎𝑛(𝑥), 𝑒𝑥𝑝 (𝑥), 𝑙𝑛(𝑥), 𝑒𝑟 𝑓 (𝑥), 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 (𝑥)) and four non-

continuous functions for arithmetic circuits from AxBench [23]

(Brent-Kung, Forwardk2j, Inversek2j, Multiplier). We consider two

quantization schemes: (1) the number of inputs 𝑛 = 9, the size of

the free set as 4, and the size of the bound set as 5; (2) the number of

inputs 𝑛 = 16, the size of the free set as 7, and the size of the bound

set as 9. The performance of different approaches is measured by

MED and runtime.

The proposed method is compared to the state-of-the-art method

in [9]. In that method, the number of tried input partitions is limited

by 𝑃 = 1000. The number of the iteration round is set as 𝑅 = 5. For

the ILP solver Gurobi, we set the runtime bound of solving a single

ILP problem as 3600s. If the runtime reaches the bound, Gurobi

returns the current best solution.

For our proposed Ising model-based method, the parameters for

the stop criterion in Section 3.3.1 are set as 𝑓 = 20 and 𝑠 = 20 when

𝑛 = 9, and 𝑓 = 10 and 𝑠 = 10 when 𝑛 = 16. The threshold for energy

variance is set as 𝜖 = 10
−8
.

4.1 Performance on Small-Scale Cases
We compare the performance of different approximate disjoint

decomposition approaches on six continuous functions for separate

and joint modes as shown in Table 1. The first quantization scheme

is applied, i.e., 𝑛 = 9. The number of outputs is 𝑚 = 9. For the

case of 9-input Boolean functions, the ILP-based method in [9],

denoted as DALTA-ILP, can be applied for both separate and joint

modes. The proposed Ising model-based method is compared with

DALTA-ILP for separate and joint modes. Moreover, this work is

also compared with the two heuristic methods for the joint mode,

denoted as DALTA [9] and BA [10].

DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA Weihua Xiao, Tingting Zhang, Xingyue Qian, Jie Han, and Weikang Qian

Table 1: Comparison of approximate disjoint decomposition using different methods for separate and joint modes with the
number of inputs 𝑛 = 9.

Benchmarks Separate Mode Joint Mode

Function Domain Range DALTA-ILP [9] Prop. DALTA [9] DALTA-ILP [9] BA [10] Prop.
MED Time(𝑠) MED Time(𝑠) MED Time(𝑠) MED Time(𝑠) MED Time(𝑠) MED Time(𝑠)

𝒄𝒐𝒔 (𝒙) [0, 𝜋
2
] [0, 1] 11.64 258.37 8.33 0.56 2.96 3.06 2.48

3600

2.46 1.54 2.5 1.75

𝒕𝒂𝒏(𝒙) [0, 2𝜋
5
] [0, 3.08] 10.91 236.32 10.45 0.56 3.24 2.83 2.62 2.84 1.57 2.5 1.87

𝒆𝒙𝒑 (𝒙) [0, 3] [0, 20.09] 9.26 242.58 7.07 0.74 4.22 2.72 3.55 3.01 1.5 2.66 1.92

𝒍𝒏(𝒙) [1, 10] [0, 2.30] 8.32 224.68 6.57 0.49 4.69 6.77 2.55 2.9 1.49 2.72 2.77

𝒆𝒓𝒇 (𝒙) [0, 3] [0, 1] 5.07 139.6 4.61 0.42 1.85 2.76 2.66 2.66 1.38 1.9 1.55

𝒅𝒆𝒏𝒐𝒊𝒔𝒆 (𝒙) [0, 3] [0, 0.81] 10.91 229.25 9.69 0.46 4.75 2.81 3.38 4.27 1.51 2.8 1.51

Average of MED and Time 9.35 221.8 7.83 0.53 3.61 3.49 2.87 3600 3.02 1.49 2.51 1.89

The smallest average MED and the shortest average time are highlighted for separate and joint modes.

Since the separate mode ignores the significance of different

Boolean functions, the approximate decomposition obtained under

the separate mode is less accurate than that found under the joint

mode. Under the separate mode, the proposed Ising model-based

approach uses less than 0.6𝑠 to find an approximate decomposi-

tion with a MED less than 11. Compared with DALTA-ILP, our
approach shows advantages in both accuracy and runtime. Using

approximately 418× shorter time, it can find a solution with a 16%

improvement in MED. For the joint mode, compared to DALTA,
DALTA-ILP can find a better approximate decomposition with an

average 20% decrease in MED but at a significant increase in run-

time. Using BA approach achieves an average 16% smaller MED

in a short time than using DALTA. However, the MED is noncom-

petitive to that obtained from using DALTA-ILP. The experimental

results for all six benchmarks show that our approach outperforms

the existing ones in MED. It can lead to a 12% smaller MED than

DALTA-ILP on average. Although a relatively longer runtime is

required compared with BA, the accuracy issue is solved, which is

rather difficult for other approaches.

4.2 Performance on Large-Scale Cases
In this experiment, the inputs are quantized to 16 bits (𝑛 = 16)

for all the benchmarks. The outputs for continuous functions are

quantized to 16 bits (𝑚 = 16), and the outputs for non-continuous

functions are adjusted accordingly (𝑚 = 9 for Brent-Kung and

𝑚 = 16 for others). In this section, we only compare the proposed

Ising model-based method over the joint mode with DALTA, as the
final error will be large if using the separate mode for the 16-input

Boolean functions. In the framework of BA, it will generate input
partitions based on simulated annealing, different from those of

DALTA. Thus, for fairness, we do not compare with BA in this

section.

Fig. 4 plots the ratios of MEDs obtained from the Ising model-

based method to those obtained from DALTA and also the ratios

of runtimes of the former to those of the latter and also gives the

MEDs and runtime of using DALTA as the baseline. A ratio less than

1 means that the Ising model-based method is better. As revealed in

the figure, our method achieves an improvement in both MED and

runtime for seven out of ten benchmarks. An average of 11% smaller

MED is obtained with an average 1.16× speedup in runtime. These

results indicate that the proposed Ising model-based approximate

decomposition approach has a better performance.

0 0.2 0.4 0.6 0.8 1 1.2

cos(x)

tan(x)

exp(x)

ln(x)

erf (x)

denoise(x)

Brent-Kung

Forwardk2j

Inversek2j

Multiplier

Ave

MED

Time

MED Time(s)

10.18 4477.86

3.14 3389.72

10.30 3865.39

10.65 5312.16

15.01 3983.88

33.94 4503.74

1.11 1886.98

1168.18 8261.07

379.68 6970.90

481.47 8506.03

211.37 5115.77

DALTA

Figure 4: The performance of Isingmodel-based approximate
disjoint decomposition vs. DALTA [9] for joint mode with
the number of inputs 𝑛 = 16.

5 Conclusion
In this paper, an efficient Ising model-based approximate disjoint

decomposition approach is developed to aid the design of low-cost

approximate LUTs. A column-based approximate disjoint decompo-

sition approach is first proposed, which is mathematically friendly

to a second-order Isingmodel-based COP solver. Then, how to avoid

the use of absolute operations in the formulations is investigated

for better adapting to the solver. Two improvement techniques are

proposed to guide the update of spin states during the search for

solutions using an SB-based Ising solver for approximate disjoint

decomposition. The dynamic stop criteria dynamically determine

the end of the search by identifying if the system becomes steady.

For quality improvement, a heuristic is introduced to intervene

the search by determining some variable values before the update.

Extensive experiments on 16-bit Boolean functions show that the

proposed Ising model-based solver outperforms the state-of-the-art

methods in both accuracy and runtime.

Acknowledgment
This work at the University of Alberta was supported by the Natural

Sciences and Engineering Research Council (NSERC) of Canada

(Project Numbers: RES0048688, RES0051374 and RES0054326).

References
[1] J. Cong et al., “Energy-efficient computing using adaptive table lookup based on

nonvolatile memories,” in ISLPED. IEEE, 2013, pp. 280–285.

[2] Q. Xu et al., “Approximate computing: A survey,” IEEE Design & Test, vol. 33, no. 1,
pp. 8–22, 2016.

[3] M. J. Schulte and J. E. Stine, “Symmetric bipartite tables for accurate function

approximation,” in ARITH. IEEE, 1997, pp. 175–183.

Efficient Approximate Decomposition Solver using Ising Model DAC ’61, Jun 23, 2024– Jun 27, 2024, San Francisco, CA

[4] S.-F. Hsiao et al., “Hierarchical multipartite function evaluation,” IEEE TC, vol. 66,
no. 1, pp. 89–99, 2016.

[5] M. Imani et al., “Resistive configurable associative memory for approximate

computing,” in DATE. IEEE, 2016, pp. 1327–1332.

[6] A. Rahimi et al., “Approximate associative memristive memory for energy-

efficient GPUs,” in DATE. IEEE, 2015, pp. 1497–1502.

[7] V.-S. Shen and A. C. Mckellar, “An algorithm for the disjunctive decomposition

of switching functions,” IEEE TC, vol. 100, no. 3, pp. 239–248, 1970.
[8] Y. Yao et al., “Approximate disjoint bi-decomposition and its application to ap-

proximate logic synthesis,” in ICCD, 2017, pp. 517–524.
[9] C. Meng et al., “DALTA: A decomposition-based approximate lookup table archi-

tecture,” in ICCAD. IEEE, 2021, pp. 1–8.

[10] X. Qian et al., “High-accuracy low-power reconfigurable architectures for

decomposition-based approximate lookup table,” in DATE, 2023, pp. 1–6.
[11] B. H. Korte et al., Combinatorial optimization. Springer, 2011, vol. 1.

[12] B. A. Cipra, “An introduction to the Ising model,” Am. Math. Mon., vol. 94, no. 10,
pp. 937–959, 1987.

[13] T. Zhang et al., “A review of simulation algorithms of classical Ising machines

for combinatorial optimization,” in ISCAS. IEEE, 2022, pp. 1877–1881.

[14] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,” Jour-
nal of statistical physics, vol. 34, no. 5, pp. 975–986, 1984.

[15] H. Goto et al., “Combinatorial optimization by simulating adiabatic bifurcations

in nonlinear Hamiltonian systems,” Sci. Adv., vol. 5, no. 4, p. eaav2372, 2019.
[16] K. Tatsumura et al., “Real-time trading system based on selections of poten-

tially profitable, uncorrelated, and balanced stocks by NP-hard combinatorial

optimization,” arXiv preprint arXiv:2307.06339, 2023.
[17] T. Zhang and J. Han, “Efficient traveling salesman problem solvers using the

Ising model with simulated bifurcation,” in DATE. IEEE, 2022, pp. 548–551.

[18] A. Lucas, “Ising formulations of many NP problems,” Front. Phys., 2014.
[19] T. Kanao and H. Goto, “Simulated bifurcation for higher-order cost functions,”

Applied Physics Express, vol. 16, no. 1, p. 014501, 2022.
[20] H. Goto et al., “High-performance combinatorial optimization based on classical

mechanics,” Sci. Adv., vol. 7, no. 6, p. eabe7953, 2021.
[21] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

[22] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online].

Available: https://www.gurobi.com

[23] A. Yazdanbakhsh et al., “AxBench: A multiplatform benchmark suite for approxi-

mate computing,” IEEE IEEE Des. Test, vol. 34, no. 2, pp. 60–68, 2016.

https://www.gurobi.com

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Ising Model and Simulated Bifurcation
	2.2 Row-based Disjoint Decomposition
	2.3 Row-based Approximate Disjoint Decomposition
	2.4 Core COP of Row-based Approximate Disjoint Decomposition

	3 Ising Model-based Approximate Disjoint Decomposition
	3.1 Column-based Approximate Disjoint Decomposition
	3.2 Ising Formulation of Column-based Core COP
	3.3 Improvement Strategies for bSB-based Approximate Disjoint Decomposition

	4 Experimental Results
	4.1 Performance on Small-Scale Cases
	4.2 Performance on Large-Scale Cases

	5 Conclusion
	References

