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Given the stringent requirements of energy efficiency for Internet-of-Things edge devices, approximate
multipliers have recently received growing attention, especially in error-resilient applications. The computation
error and energy efficiency largely depend on how and where the approximation is introduced into a design.
Thus, this article aims to provide a comprehensive review of the approximation techniques in multiplier designs
ranging from algorithms and architectures to circuits. We have implemented representative approximate
multiplier designs in each category to understand the impact of the design techniques on accuracy and
efficiency. The designs can then be effectively deployed in high level applications, such as machine learning,
to gain energy efficiency at the cost of slight accuracy loss.
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1 INTRODUCTION
The rapid growth of Internet-of-Things (IoT) has made energy efficiency a critical concern for IoT
devices due to the constrained resources on the edge [1]. Conventional processors, such as the
central processing unit (CPU) and the graphics processing unit (GPU), compute with pre-determined
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but unnecessary full precisions for all the computational tasks, which inevitably reduces the energy
efficiency. However, for many error-tolerant applications, such as neural networks, computational
approximation or inaccuracy can be tolerated without impacting the inference accuracy [2]. Thus, it
is highly desired to optimize the energy efficiency for resource-constrained IoT devices by providing
sufficient instead of excessively accurate outputs.
Given the error tolerance nature of many IoT applications [3–7], approximate computing that

trades numerical precision for computational efficiency has become a promising alternative to
achieving the needed energy efficiency with quality results while consuming minimum resources.
For computationally intensive applications, e.g., neural networks and image processing, multipli-
cation is probably the most frequently invoked operation [8], which requires significant energy
and a long latency to provide accurate outputs.
As a common arithmetic component, the multiplier has been studied for decades [9, 10]. The

focus was mainly on accuracy and performance in fully precise computations. Mitchell proposed
an approximate logarithm-based multiplier in the 1960s [11], which, however, failed to attract
significant attention for decades. Since then, the approximation technique of truncation and its
variants, such as the fixed-width multiplier that enforces the same bit-width for both inputs
and outputs, have been proposed for achieving area efficiency [12, 13]. To reduce the truncation
induced inaccuracy, around 2000, a few compensation techniques were suggested at the cost of
additional complexity [14–18]. Recently, with the popularity of IoT devices and their stringent
resource constraints, researchers from both academia and industry have devoted significant efforts
to approximate multiplier design and optimization, which resulted in many effective and interesting
approximation techniques [8, 19–38]. In general, such efforts can be categorized at multiple levels,
ranging from algorithms, architectures, to circuits:1

• At the algorithm level, the Mitchell’s multiplier has been further improved to reduce the
bias or hardware costs [39–42]. Additionally, a linear-fitting algorithm has been innovatively
applied to transform multiplication to simpler operations such as addition and shift [31, 32].

• Approximate techniques at the architecture level are more frequently revisited and explored.
Various new techniques have been introduced at different stages of a binary multiplication
following the conventional data flow [24, 36, 43–47, 47–56].

• At the circuit level, various approximation techniques have been incorporated into the low-
level implementations of the sub-modules of a multiplier [24, 51, 54, 55, 55, 57, 58]. Such
circuit-level techniques can be integrated into the designs at the other two levels.

Approximate multipliers have already been successfully applied in error-tolerant tasks, such as
filtering, image processing, and machine learning [14, 15, 37–39, 59–72]. In 1985, Ashtaputre et al.
designed a systolic array with approximate multipliers and demonstrated that the inaccurate multi-
plication can bring negligible impact on the results [59]. Around 2000, fixed-width multiplier [12, 13]
were widely used in digital signal processing such as filtering [15] and wavelet transformation [14].
Snigdha et al. applied approximate multipliers in image compression blocks and observed over 12%
improvements in area, power, and delay [64]. Hammad et al. replaced the original full-precision
multipliers in VGG networks with approximate ones to support the classification tasks on CIFAR-
10 and CIFAR-100, which again showed negligible accuracy losses [68]. After that, they further
proposed to deploy approximate multipliers in training to improve the performance [70].

Scope of the article: Since many prior designs rely on hand-crafted structures or heuristics, it
is then highly desired to systematically review and understand the advantages and disadvantages
of the various alternatives to introducing approximation into a design. Hence, this article provides

1The algorithm in this article means the computation procedure of multiplication rather than a problem-solving process. A
more clear definition of the three levels is given in Section 3.
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a comprehensive review of the approximate multipliers, including approximation techniques
at the algorithm, architecture, and circuit levels, the comparison of different techniques using
various metrics, and the discussion of the future trend. It is noted that we re-implement various
approximation techniques in Verilog to ensure the fair comparison in our evaluation, which will be
released as an open-source library, AM-Lib [73].

The remainder of this article is organized as follows. In Section 2, we review the background of
approximate multipliers. Section 3 provides an overview of the approximate multipliers. Sections 4
to 6 discuss the approximatemultipliers at the algorithm, architecture, and circuit levels, respectively.
Note that some presented designs utilize approximation techniques at multiple levels. In Section 7,
we evaluate the accuracy and hardware cost of approximate multipliers and their applications
in neural networks by considering accuracy losses and energy efficiency. Then, a discussion is
presented in Section 8 followed by the conclusions in Section 9.

2 BACKGROUND
2.1 Fixed-point vs. Floating-point Representations

Fig. 1. Comparison between fixed-point and floating-point formats.

Similar as many arithmetic functions implemented in hardware, the multiplier design can be
categorized to fixed-point and floating-point implementations as a trade-off among accuracy,
dynamic range, and cost. The major difference between fixed-point and floating-point numbers
lies in whether the implementation has a specific number of digits reserved for the integer and
fractional parts. In other words, a fixed-point representation uses a decimal point at a fixed position.
Obviously, a floating-point representation may offer a wider dynamic range and higher precision
than its fixed-point counterpart, but at the cost of area, speed, and power consumption.

Fig. 1 compares the fixed-point and the floating-point formats in the binary number system. The
fixed-point format consists of a sign bit, an integer part, and a fractional part, with a fixed binary
point position. On the other hand, according to the IEEE 754 standard [74], which is a technical
standard for floating-point arithmetic, a floating-point number consists of a sign, an exponent,
and a mantissa. The mantissa of a normalized floating-point number is a fraction between 1 and 2,
where its first digit is fixed to 1 and the rest is the fraction in the range of [0,1).

With the underlying number representations, designers may use either a fixed-point or a floating-
point multiplier to conduct multiplication. For the floating-point numbers, the multiplication
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Fig. 2. An example of a 32-bit floating-point multiplication according to IEEE 754 standard.

procedure of 32-bit floating-point numbers is shown in Fig. 2. The sign bits are XORed and the
exponents are summed by an adder. Then, a bias of 127 is subtracted from the sum to allow both
negative and positive values for the exponent. Finally, the two mantissas are multiplied and shifted
to the range of 1 and 2 to produce the normalized representation. The exponent will be adjusted if
a shift happens. For a floating-point multiplication, the computation on the mantissa part requires
more energy and a longer delay than the other two parts, which is hence the focus of most research
work [31, 32]. On the other hand, if no overflow occurs, the fixed-point multiplication is carried out
as a regular multiplication with its fractional part truncated to the specified bit-width. However,
the difference between the two multiplications is actually smaller than it seems. The multiplication
of the mantissa parts of floating-point numbers can be always viewed as a special case of fixed-
point multiplication, where the integer part is 1. Thus, the most critical operations in fixed- and
floating-point multiplications can be considered as the same.

2.2 Binary Multipliers
Before we elaborate further the approximate multiplier design, we introduce the basics of a binary
multiplier in this section, which sheds light on different approximation techniques introduced in
the latter sections.
Due to the nature of dealing with the two digits, 𝑖 .𝑒 ., 0 and 1, the binary multiplication can

be considered as a process of addition and shifting. For example, consider two 4-bit operands
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Fig. 3. An example of 4-bit multiplication.

of 𝑥 and 𝑦, where 𝑥 is the multiplicand and 𝑦 is the multiplier. As shown in Fig. 3, similar to
decimal multiplication, the binary multiplication is carried out for each bit of the multiplier (𝑖 .𝑒 .,
𝑦𝑖 for 𝑖 = 0, 1, 2, 3) and the multiplicand (𝑖 .𝑒 ., 𝑥={𝑥3, 𝑥2, 𝑥1, 𝑥0}) to generate a partial product, 𝑒.𝑔.,
{𝑝3,0, 𝑝2,0, 𝑝1,0, 𝑝0,0} for the first row. This process is then repeated for each bit of the multiplier 𝑦,
with the partial product left-shifted by 1 bit. Finally, all the partial products are accumulated to
obtain the final product as {𝑟7, 𝑟6, 𝑟5, 𝑟4, 𝑟3, 𝑟2, 𝑟1, 𝑟0}. Thus, the operation of a binary multiplier can
be roughly divided into three stages, data input, partial product generation, and accumulation.

Since the partial product is generated without a carry, the bit-wise multiplication can be calculated
with AND gates. Once all the partial products are generated, we can use an array of adders to
accumulate the partial products as shown in Fig. 4, where HA refers to a half adder and FA refers
to a full adder. Obviously, the critical path of such a structure is the carry propagation chain. For
example, Fig. 4(a) shows a ripple-carry adder (RCA)-based accumulator, with the carries propagated
horizontally from right to left, while Fig. 4(b) shows a carry-save adder (CSA)-based accumulator
with carries propagated diagonally to achieve a shorter critical path for faster speed.

In order to further accelerate the accumulation, Wallace proposed a tree structure in 1964 [75].
As shown in Fig. 5, the Wallace Tree groups three partial products within one column to generate
two outputs, i.e., a sum and a carry, thereby reducing the number of partial products by a factor of
approximately 1.5. The operation is repeated until only two rows are left, e.g., by the first 3 steps in
Fig. 5. Then, the last two rows are added up to obtain the final result. Parallel computation and
partial product compression in each stage can be utilized to speed up the accumulation process [75].

2.3 Exact Compressor
In the tree-based partial product accumulation, such as Wallace tree [75] and Dadda tree [76],
compressors are used to count the number of ones within a group of partial products. The full
adder and half adder in Fig. 5 are widely used as 3-2 compressor and 2-2 compressor, respectively.
In order to further improve the compression efficiency, higher-order compressors, such as 4-2 and
5-2 compressors [77–81] or 6-3 and 7-3 compressors [82], have also been investigated. Fig. 6 shows
the design of a conventional 4-2 compressor. It consists of two full-adders and has five primary
inputs (PIs), 𝑥1, 𝑥2, 𝑥3, 𝑥4, and𝐶in, and three primary outputs (POs), Sum,Carry, and𝐶out, where𝐶in
comes from the preceding less significant block, and 𝐶out goes to the next more significant block.

, Vol. 1, No. 1, Article . Publication date: November 2023.



6 Ying Wu, et al.

(a)

(b)

Fig. 4. (a) An example of RCA-based accumulator; (b) An example of CSA-based accumulator.

The outputs Sum, Carry, and 𝐶out can be calculated as [83]:

Sum = 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4 ⊕ 𝐶in,

Carry = (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4) ∧𝐶in + (𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4) ∧ 𝑥4,

𝐶out = (𝑥1 ∧ (𝑥2 ∨ 𝑥3)) ∨ (𝑥2 ∧ 𝑥3).

Note that the bit significances of the Carry and 𝐶out are both twice of that of Sum.

3 OVERVIEW OF APPROXIMATE MULTIPLIERS
Many prior works on approximate multiplier have tackled the problem by introducing approxima-
tions at algorithm, architecture, or circuit levels to reduce the critical path delay or improve the
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Fig. 5. An example of Wallace Tree-based multiplier.

Full adder

Full adder

Carry Sum

𝑥1 𝑥2 𝑥3 𝑥4 

𝐶𝑖𝑛  

𝐶𝑜𝑢𝑡  

Fig. 6. A conventional exact 4-2 compressor.

energy efficiency. For example, at the algorithm level, Ahmed et al. explored a pipelined log-based
approximation using the classical Mitchell’s multiplier with an iterative procedure to improve the
accuracy [84]. At the architecture level, many works focused on improving the conventional multi-
plier architecture with approximate components, such as adders, to speed up the addition or partial
product generation [24, 45, 85–88]. At the circuit level, references [24, 51, 54, 55, 57, 58, 89–91]
proposed to approximate Boolean algebra expressions or prune out a few gates to simplify the
circuit.
For all the prior works with various approximation techniques, it is actually very challenging

to precisely categorize the introduced approximation to a particular design level, i.e., algorithm,
architecture, or circuit levels. Many of them actually involve multiple design levels, as the highest
level approximation, i.e., the algorithm level, may incur additional architecture changes [31, 32, 84,
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92, 93]. Similarly, circuit-level techniques are often utilized for basic module designs applied in
higher-level approximation schemes [24, 30, 40, 46, 49–56, 58, 89, 94].

In order to facilitate our review, we introduce the following definitions to categorize the consid-
ered approximation:

• Algorithm: The introduced approximation originates from a different algorithmic procedure
to conduct multiplication.

• Architecture: With the binary multiplier architecture in Section 2.2 as a reference, the in-
troduced approximation is intended to improve the efficiency of a particular stage in the
reference architecture.

• Circuit: The approximation technique is not limited to a particular architecture or algorithm,
and it can be combined with the approximation techniques at other design levels.

Table 1 summarizes the state-of-the-art works reviewed in this article. These works are listed in
the reverse chronological order. We mark the types of approximate multipliers (where symbols U, S,
and FP indicate fixed-point unsigned, fixed-point signed, and floating-point multipliers, respectively)
and the utilized techniques in the three considered levels. Due to the space limit, we use some
abbreviations to represent the approximation techniques or stages in the remainder of this article:

• The abbreviations log, linear, and hy in the algorithm level indicate logarithm-based, lin-
earization-based, and hybrid schemes, respectively.

• In the architecture level, the abbreviations in, pp, acc, and enc denote input, partial product,
accumulation, and encoder, respectively, representing the four stages in a multiplier to
introduce the approximation.

• The abbreviations BR, GP, ECD, and VOS in the circuit level denote Boolean rewriting, gate-
level pruning, evolutionary circuit design, and voltage over-scaling techniques, respectively.

The techniques mentioned above will be described in details in what follows.

4 APPROXIMATE MULTIPLIER WITH ALGORITHM-LEVEL APPROXIMATION
The algorithm-level approximate multiplier rebuilds the multiplication algorithm itself, which
naturally results in a new multiplier architecture. In this section, we will review three different
multiplier approximations at the algorithm level: logarithm-based approximation, approximation
with linearization, and hybrid approximation.

4.1 Logarithm-Based Approximation
With logarithmic transformation, the multiplication can be converted to addition, where the two
operands are the logarithms of multiplicand and multiplier, respectively. The first logarithm-based
multiplier (LM) was proposed by Mitchell in 1962 [11]. For a multiplication of two operands 𝐴 and
𝐵, we have:

𝐴 = 2𝑘1 (1 + 𝑥1) , (1)

log2 (𝐴) = 𝑘1 + log2 (1 + 𝑥1) , (2)

where 𝑘1 indicates the position of the leading one of 𝐴 and 𝑥1 is the fraction part of 𝐴 that lies in
[0, 1). The same formulation can be applied to the other operand 𝐵 with the parameters of 𝑘2 and
𝑥2. The logarithm of the product can be written as:

log2 (𝐴 × 𝐵) = 𝑘1 + 𝑘2 + log2 (1 + 𝑥1) + log2 (1 + 𝑥2) . (3)

According to Eq. (3), the implementation based on Mitchell’s algorithm [11] requires leading one
detectors (LODs), binary-logarithm converters (BLCs), adders, and logarithm-binary converters

, Vol. 1, No. 1, Article . Publication date: November 2023.



A Survey on Approximate Multiplier Designs for Energy Efficiency: From Algorithms to Circuits 9

Table 1. Summary of the state-of-the-art designs of approximate multipliers.

Type Algorithm Architecture CircuitYear Work U S FP log linear hy in pp acc enc BR ECD GP VOS
2022 [95] ✓ ✓
2020 [40] ✓ ✓ ✓
2020 [32] ✓ ✓
2020 [50] ✓ ✓ ✓
2020 [54] ✓ ✓ ✓
2019 [31] ✓ ✓
2019 [36] ✓ ✓ ✓ ✓
2019 [52] ✓ ✓ ✓
2019 [41] ✓ ✓
2018 [93] ✓ ✓
2018 [47] ✓ ✓ ✓
2018 [51] ✓ ✓ ✓
2018 [39] ✓ ✓ ✓
2018 [42] ✓ ✓ ✓
2018 [58] ✓ ✓ ✓ ✓
2018 [49] ✓ ✓ ✓
2018 [94] ✓ ✓ ✓ ✓
2017 [46] ✓ ✓ ✓ ✓
2017 [92] ✓ ✓
2017 [44] ✓ ✓ ✓ ✓
2017 [48]
2017 [55] ✓ ✓ ✓ ✓
2017 [96] ✓
2016 [89] ✓ ✓ ✓ ✓
2016 [84] ✓ ✓ ✓
2016 [97] ✓
2015 [43] ✓ ✓
2015 [56] ✓ ✓ ✓
2015 [53] ✓ ✓ ✓
2015 [91] ✓ ✓
2014 [45] ✓ ✓
2013 [98] ✓ ✓
2012 [99] ✓
2011 [24] ✓ ✓ ✓
2011 [100] ✓ ✓
2009 [101] ✓ ✓
2009 [102] ✓ ✓
2009 [30] ✓ ✓
2009 [103] ✓ ✓
2007 [104] ✓ ✓
2004 [17] ✓ ✓ ✓
1962 [11] ✓ ✓

, Vol. 1, No. 1, Article . Publication date: November 2023.



10 Ying Wu, et al.

Fig. 7. Procedure for the Mitchell’s algorithm [11].

(LBCs). The procedure for Mitchell’s algorithm is illustrated in Fig. 7 for a 16×16 multiplier. To
reduce the implementation complexity, the logarithmic expression in Eq. (3) is approximated as:

log2 (𝑥 + 1) ≈ 𝑥, 0 ≤ 𝑥 < 1 . (4)

Then we have: 𝐴 × 𝐵 ≈ 2𝑘1+𝑘2+𝑥1+𝑥2 = 2𝑘1+𝑘2 × 2𝑥1+𝑥2 . Based on the carry of 𝑥1 + 𝑥2, Eq. (4) can be
further approximated as:

𝐴 × 𝐵 ≈
{
2𝑘1+𝑘2 (𝑥1 + 𝑥2 + 1), 𝑥1 + 𝑥2 < 1 ,
2𝑘1+𝑘2+1 (𝑥1 + 𝑥2), 𝑥1 + 𝑥2 ≥ 1 .

(5)

Compared with the original multiplication, when 𝑥1 + 𝑥2 < 1, the error of Eq. (5) is given by:

𝐸𝑟𝑟𝑜𝑟 = 𝐴 × 𝐵 − 2𝑘1+𝑘2 (𝑥1 + 𝑥2 + 1)
= 2𝑘1+𝑘2 (1 + 𝑥1) (1 + 𝑥2) − 2𝑘1+𝑘2 (𝑥1 + 𝑥2 + 1)
= 2𝑘1+𝑘2𝑥1𝑥2

(6)

It is noted that the error term of 2𝑘1+𝑘2𝑥1𝑥2 has the same structure as 𝐴 × 𝐵 = 2𝑘1+𝑘2 (1 + 𝑥1) (1 + 𝑥2).
Then we can repeat the approximation procedure to compute 2𝑘1+𝑘2𝑥1𝑥2, which indicates an iterative
process to achieve a higher accuracy using logarithm-based approximation. In [84], the iterative
approximation for 𝑥1+𝑥2 ≥ 1 has been explored together with a truncation scheme. Liu et al. further
investigated the logarithm-based approximate multipliers using different approximate adders and
find that multipliers using set-one-adders (SOAs) can achieve a higher accuracy [39]. As shown
in Fig. 8, an SOA consists of one approximate adder for the lower𝑚 bits and one exact adder for
the higher (𝑛 −𝑚) bits. The approximate adder always sets the lower𝑚 sum bits to logic 1 and
hence, results in over-estimation. Such an over-estimation is particularly designed to compensate
for the accuracy loss of a logarithm-based approximate multiplier, as Mitchell’s algorithm always
underestimates the multiplication result. Similar compensation schemes have been introduced in
[40–42] to improve the average error introduced by Mitchell’s algorithm at the cost of area and
power consumption. For example, Ansari et al. proposed an improved logarithm transformation
algorithm, which introduces double-sided errors to reduce the error bias [40].
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Fig. 8. Architecture of an 𝑛-bit set-one-adder [105].

if x+y≥1 else
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else if x+y<0.5

else

L
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el
 1

L
ev

el
 2

L
ev

el
 3

Z=x+2y+1 Z=2x+y+1

Fig. 9. Computation procedure using the linear approximation in [31].

4.2 Approximation with Linearization
Multiplication is a nonlinear operation that can be implemented with additions and compressions.
In mathematics, it is a natural idea to approximate a nonlinear curve with a piece-wise linear
function. Thus, researchers have attempted to use linear arithmetic operations to approximate the
nonlinear multiplication [31, 32]. It is noted that, while logarithm-based approximate designs are
based on Eq. (5), it is actually a special case of linearization.
Without loss of generality, the multiplication can be considered as a function of two variables,

whose linear approximation can be expressed as:

𝑓 = 𝑥𝑦 ≈ 𝑓𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑎𝑥 + 𝑏𝑦 + 𝑐; , (7)

where 𝑥 and 𝑦 are the input operands, and 𝑎, 𝑏, and 𝑐 are coefficients. In [31], an iterative linear
approximation for floating-point multiplication is proposed to approximate the multiplication
according to Eq. (7). For the mantissas of normalized floating-point numbers, the range of the
product is [1, 2) × [1, 2), which is a square domain. By appropriately partitioning the domain
into smaller sub-domains and assigning a proper linear function to each, the original nonlinear
surface for the multiplication can be approximated by a series of piece-wise linear functions, one
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for each sub-domain. Fig. 9 summarizes the computation procedure called ApproxLP using the
linear approximation in [31]. It is clear that the accuracy can be improved by partitioning more
sub-domains, the number of which grows exponentially with the approximation level. Thus, the
efficiency of ApproxLP in [31] actually quickly degrades with a larger approximation level. Moreover,
the comparators used for each level in Fig. 9 also introduce non-trivial delay overhead. Fig. 10 plots
the error distributions of mantissa multiplications in ApproxLP for different approximation levels
with 𝑥-axis and 𝑦-axis representing the mantissa range.

Fig. 10. Error distributions of ApproxLP at different approximation levels [31].

To reduce the number of comparators, Chen et al. proposed to partition the input domain into
identical smaller square sub-domains [32]. For one level higher, each domain (or sub-domain) is
further partitioned into four identical smaller ones. With such an iterative process, there are 4𝑛
sub-domains for level-𝑛 approximation. For a rectangular domain [𝑥1, 𝑥2] × [𝑦1, 𝑦2], the optimal
coefficients to minimize the mean square error (MSE) between 𝑓𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑎𝑥 + 𝑏𝑦 + 𝑐 and 𝑓 = 𝑥𝑦

are [32]:

𝑎 =
𝑦1 + 𝑦2

2
, 𝑏 =

𝑥1 + 𝑥2

2
, 𝑐 = −𝑎𝑏. (8)

Fig. 11 demonstrates the multi-level approximate multiplier architecture of an optimally approxi-
mated multiplier (OAM) in [32]. In the figure, Level 0 is denoted as the basic approximation module,
which provides an initial estimation 𝑓 0𝑎𝑝𝑝𝑟𝑜𝑥 , while the deeper levels act as error compensation to
gradually improve the overall accuracy. Thus, the run-time configurability can be easily realized
by specifying the desired depth. Unlike ApproxLP [31], comparators are no longer needed for
OAM [32]. Thus, the delay of OAM can be significantly reduced when compared to ApproxLP even
for a similar number of sub-domains.
Since the two coefficients of 𝑎 and 𝑏 are the middle points of the intervals where the operands

belong to, a circuit-friendly implementation can be achieved for the error compensation at each
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Fig. 11. Architecture of the approximate multiplier OAM in [32].

level as [32]:

Δ𝑓𝑛 =

{[(
𝑥 [𝑛]?(1) : (−1)

)
× (𝑦 − ˆ𝑦𝑛−1)

]
+
[ (
𝑦 [𝑛]?(1) : (−1)

)
× (𝑥 − ˆ𝑥𝑛−1)

]}
≫ (𝑛 + 1) (9)

+
[ (
𝑥 [𝑛] ⊕ 𝑦 [𝑛]

)
?(1) : (−1)

]
≫ (2𝑛 + 2),

where “? :” is the conditional operator, ⊕ is the XOR operator, ≫ is the right shift operator, 𝑥 [𝑛] is
the 𝑛𝑡ℎ most significant bit (MSB) of mantissa 𝑥 , and ˆ𝑥𝑛−1 preserves the (𝑛 − 1) MSBs of mantissa
𝑥 with an extra bit 1 at the 𝑛𝑡ℎ MSB position. Since the number of right shifts is pre-determined
at each level, the right shift operation does not require an additional circuit to implement. Thus,
the number of operations at each level for the OAM is reduced to 5, including one XOR operation,
two arithmetic negations, and two additions, which results in a constant area complexity, whereas
ApproxLP has an area complexity of 𝑂 (4𝑛) [32]. In addition, a hardware-friendly implementation
of the OAM is provided in [106].
The errors of the OAM [32] are shown below in terms of maximum error distance (MaxED),

mean error distance (MED), and MSE for the approximation level 𝑛:

MaxED =
1

4𝑛+1
,MED =

1
4𝑛+2

,MSE =
1

9 × 16𝑛+1
. (10)

The OAM [32] can produce a zero-mean error distribution, which is an appealing feature for
applications with consecutive multiply-accumulate operations.
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4.3 Hybrid Approximation
Several approximate designs combine the multipliers with different precisions together to adapt
to varying accuracy requirements [92, 93]. These designs are considered as using hybrid approxi-
mation in this article. For example, accurate and approximate multipliers are combined to adjust
the computational accuracy by selecting the appropriate multiplier in [92]. For the approximate
multiplier, after detecting the number of consecutive 1’s or 0’s in the mantissa, the mantissa can
then be rounded to 1 or 2, which converts the multiplication to a shift operation. If a higher precision
is required, the accurate multiplier is then invoked to conduct the calculation. Reference [93] used
the sum of two mantissas to approximate the multiplication. A tuning strategy is proposed to
decide the working mode of the multiplier by detecting the number of consecutive bits in the
inputs. However, such methods heavily rely on an accurate or high-precision multiplier, which
significantly increases the circuit area.

5 APPROXIMATE MULTIPLIERS WITH ARCHITECTURE-LEVEL APPROXIMATION
As discussed in Section 2.2, a conventional multiplier typically involves three stages, 𝑖 .𝑒 ., data input,
partial product generation, and accumulation. In addition, an encoding stage is often deployed
to further reduce the number of partial products, 𝑒.𝑔., Booth encoding [107]. For approximate
multipliers based on such an architecture, approximations can be introduced into any of the four
aforementioned stages.

(a)

(b)

Fig. 12. (a) An example of DSM truncation; (b) An example of SSM truncation.

5.1 Approximation at Input
It is simple yet effective to introduce approximation in the input for approximate multipliers. For
example, a few least significant bits (LSBs) can be removed to reduce the input bit-width, which
has a lower impact on the result than removing the MSBs [36, 43–45]. In general, there are two
types of input truncation schemes, the dynamic segment method (DSM) and static segment method
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(SSM) [45]. DSM segments the data according to the leading one, while SSM is based on a given
segmentation option. For example, in Fig. 12(a), DSM keeps 𝑘 consecutive bits from the leading one
of an unsigned number. The parameter 𝑘 determines the level of accuracy loss for an approximate
multiplier. In contrast, SSM in Fig. 12(b) provides a few pre-determined (𝑖 .𝑒 ., static) options when
truncating the input. The options can be either leading 𝑘 bits (option 1) or last 𝑘 bits (option 2),
as suggested in [45]. It is also possible to keep the bits in the middle (option 3) as a trade-off
(Fig. 12(b)). Unlike DSM, SSM requires less hardware resources but may include more redundant
bits. As shown in the Dynamic Range Unbiased Multiplier (DRUM) in [43], the additional support
to DSM requires two extra Leading-One Detectors (LODs), two extra encoders, and one extra barrel
shifter. Moreover, the last bit of the reserved part is always set to one for unbiasedness.

5.2 Approximation at Partial Product Generation
Kulkarni et al. proposed an under-designed multiplier (UDM) architecture, which brings approxima-
tion into the partial product generation stage [24]. UDM partitions both multiplier and multiplicand
into 2 parts, and then implements inaccurate 2 × 2 multiplication blocks. As shown in Fig. 13, each
partial product can be produced by an approximate multiplier.

Fig. 13. An example of UDM in [24].

Another alternative to partial product generation is to introduce an intermediate variable to
replace the partial products (a.k.a. altered partial product (APP)) and then conduct approxima-
tions [46–48]. As discussed in Section 2.2, a partial product can be generated using an AND gate:

𝑝𝑝𝑚,𝑛 = 𝑥𝑚 · 𝑦𝑛 , (11)

where 𝑥𝑚 and 𝑦𝑛 represent the𝑚𝑡ℎ and the 𝑛𝑡ℎ bit of the two inputs 𝑥 and 𝑦, respectively. Similar
as carry look-ahead adder, the propagate and the generate signals can be defined as:

𝑝𝑚,𝑛 = 𝑝𝑝𝑚,𝑛 + 𝑝𝑝𝑛,𝑚 , (12)

𝑔𝑚,𝑛 = 𝑝𝑝𝑚,𝑛 · 𝑝𝑝𝑛,𝑚 . (13)
Since the generate signals are possibly all 0’s, they can be compressed column-wise using an OR
gate. The propagate signals can be computed using approximate adders to achieve a more compact
design than the original multiplier. Yang et al. employed a similar idea of using two signals of
approximate sum and error recovery vector to approximate the partial product [47].

5.3 Approximation at Accumulation
In this section, we discuss the related works on approximation at the accumulation stage. First, we
focus on the basic modules used at this stage, including approximate compressors and approximate
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1-bit adders. Then, we review the works on the allocation of different approximate compressors in
the entire accumulation stage.

5.3.1 Approximate Compressors. Instead of the exact compressors in Section 2.3, many approximate
compressor designs have been proposed to improve the energy efficiency [46, 47, 49, 51–53, 83, 108–
113]. We divide them into two categories, low-order and high-order approximate compressors.
The low-order approximate compressors include approximate 1-bit half adder, approximate 1-bit
full adder, and approximate 4-2 compressors. Taking the error rate into account, approximate 4-2
compressors with different approximation levels were designed to realize power efficient Dadda
multipliers [53, 83]. One structure of the proposed approximate 4-2 compressors in [83] is shown
in Fig. 14(a). Venkatachalam et al. took the error difference into account to design an approximate
1-bit half adder, an approximate 1-bit full adder, and an approximate 4-2 compressor. The structure
of the approximate 4-2 compressor is shown in Fig. 14(b). In order to provide more flexibility for
accuracy-power trade-off, Akbari et al. designed four approximate 4-2 compressors with different
approximation levels, each of which can flexibly switch between the exact and the approximate
operating modes [109]. A survey on some approximate 4-2 compressors is presented in [111]
together with their performance comparison.
The second category of the approximate compressors is a high-order approximate compressor,

which has at least 5 inputs. By modifying the truth table of the exact compressors, an approximate
5-2 compressor with significantly fewer transistors was proposed in [110]. Tung et al. proposed to
design more general 𝑛-2 approximate compressors (𝑛 ≥ 5) to further reduce the delay and power of
the approximate multiplier [52]. Instead of using a 2-bit output, Marimuthu et al. [112] designed an
approximate 15-4 compressor, where four different types of approximate 5-3 compressors were used
as basic modules. Esposito et al. proposed more general approximate 𝑛-⌈𝑛/2⌉ compressors, where
the outputs of these compressors are equally weighted [49]. Compared with the previously proposed
unequally-weighted approximate compressors [46, 47, 51–53, 83, 108–112], these equally-weighted
approximate compressors have smaller area, and their errors are easier to analyze.
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Fig. 14. Two approximate 4-2 compressors proposed by (a) Momeni et al. [83]; and (b) Venkatachalam et
al. [46], where 𝐶 is the carry signal and 𝑆 is the sum signal.

However, all the prior approximate compressors were manually designed. To provide a general
solution to approximate multiplier design and optimize over a number of hardware cost metrics,
Wang et al. proposed a method called MinAC to automatically generate minimal-area approximate
4-2 compressors [113]. MinAC formulates the approximate circuit design as an exact synthesis
problem [114], which introduces proper encoding variables and constraints to determine the
connections of the gates, the gate functions, and the output gates of the circuit. For example, for
any approximate 4-2 compressor in Fig. 14, its error metric such as the MED can be calculated
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and denoted as 𝑒𝑏 . Then, MinAC can be applied to synthesize an area-optimal approximate 4-2
compressor with an MED no larger than 𝑒𝑏 . Fig. 15 shows the structures of the two area-optimal
approximate 4-2 compressors obtained by MinAC. Obviously, compared to the original designs in
Fig. 14, MinAC can synthesize approximate 4-2 compressors with much fewer gates and smaller
area.
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Fig. 15. The optimized structures by MinAC for the two approximate 4-2 compressors in Fig. 14: (a) Optimized
design for the approximate compressor in [83]; and (b) Optimized design for the approximate compressor in
[46].

5.3.2 Allocation of Approximate Compressors in the Compressor Tree. In the conventional mul-
tipliers, exact compressors, such as half adders, full adders, and 4-2 compressors, are applied to
accumulate the partial product array. Researchers have proposed efficient allocation schemes to
use as few compressors as possible during the accumulation stage in order to minimize area and
delay. However, the traditional accumulation schemes are not applicable to approximate multi-
pliers as they do not consider the accumulated errors in the tree structure. To address this issue,
Venkatachalam et al. proposed a reduction scheme that uses approximate compressors to compress
the partial product array to two rows, which are then added up by an RCA [46]. Jiang et al. further
proposed to ignore the carry signals in adders to reduce the critical path delay [115]. However,
the error may become non-negligible if completely relying on approximate compressors during
accumulation. Thus, many researchers proposed to separate the partial product array column-wise
to two or three groups, as shown in Fig. 16. Due to the difference in the significance of groups, each
group can be assigned with different levels of approximation [47, 49–54]. While the first group is
always allocated with exact compressors, the second group can be allocated with either approximate
compressors using equally weighted outputs [49, 50] or high-order approximate compressors with
error recovery [51, 52]. For the last group, one straightforward approach is to completely ignore
it [47, 53]. To improve the accuracy, Tung et al. proposed to use OR gates for the last group [52]. To
provide more flexibility, Mahdiani et al. divided the partial product array into four groups through
the horizontal and vertical slicing in a broken-array multiplier (BAM), as shown in Fig. 17 [101].
The partial products on the right of vertical break level (VBL) or above the horizontal break level
(HBL) are then ignored. In other words, only the partial products on the bottom left are used for
calculation. Apparently, the approximation level can be adjusted by tuning VBL and HBL.
However, most prior works still allocate approximate compressors in an ad hoc manner or

limited to some specific types of compressors. It is desirable to automate the allocation for different
kinds of approximate compressors. For this purpose, Xiao et al. proposed a general framework for
approximate compressor allocation called OPACT, which converts the allocation problem to an
integer programming (IP) problem [95]. The proposed framework not only accounts for the trade-off
between area and accuracy, but also optimizes the connection order of different compressors.
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Truncated/ORApproximateAccurate Exact 

Compressor

Approximate 

Compressor

OR gate

Fig. 16. An example of partial product array that is divided into three groups with different levels of approxi-
mation.

omitted

omitted

Horizontal Break 

Level (HBL)

Vertical Break 

Level (VBL)

Fig. 17. An example of broken-array multiplier (BAM) [101].

5.4 Approximation at Booth Encoding
Booth encoding is often used to reduce the number of partial products, which can be generated in
parallel at the cost of additional area. The radix-4 Booth algorithm is a common option deployed
for high bit-width multipliers [116]. Qian et al. proposed an approximate Wallace-Booth multiplier
with approximate modified Booth encoding (MBE), approximate 4-2 compressors, and approximate
Wallace tree [89]. In addition to the radix-4 algorithm, the radix-8 Booth algorithm is also widely
used to further reduce the number of partial products. However, the encoder in a radix-8 algorithm
may generate odd values including 3 and −3 and hence needs additional adders to compute the odd
multiples of multiplicands when generating the partial products. This step leads to an increased
delay. To reduce the delay, Jiang et al. suggested an approximate adder to generate the odd multiples
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for multiplication [56], which can reduce the delay of carry propagation as a trade-off between
speed and accuracy.

6 APPROXIMATE MULTIPLIERS WITH CIRCUIT-LEVEL APPROXIMATION
This section reviews a few general circuit-level approximation techniques applicable to various
architectures or algorithms, including Boolean rewriting, gate-level pruning, evolutionary circuit
design, and voltage over-scaling (VOS).

6.1 Boolean Rewriting
Boolean rewriting modifies Boolean algebra expressions to simplify the circuit and is frequently
utilized to approximate the basic modules in a multiplier. Karnaugh map (K-map) modification is a
commonly used technique in this category. The basic idea of K-map is to group the adjacent cells
with the same logic values as much as possible. However, it is quite common in practice that one or
more cells cannot be grouped, causing additional logic and hence area. Thus, the approximation
to K-map can be introduced by modifying the adjacent cells to the same value so that they can
be grouped to obtain a more compact representation. For example, the approximate multiplier
UDM discussed in Section 5.2 is comprised of a 2 × 2 multiplication module [24], which can be
designed through K-map modification. By modifying the K-map as in Fig. 18, the basic block can
act as both a partial product generator and a compressor with an error rate of 1/16 [24]. As shown
in Fig. 19, when compared to the accurate logic implementation, the approximate implementation
needs much fewer logic gates (37.5% reduction) with a shorter critical path.

Fig. 18. An example of modifying K-map to achieve more compact design [24]: the accurate output ‘1001’ at
the cell (𝐴1𝐴0𝐵1𝐵0) = (1111) is changed to ‘111’.

The K-map modification can also be applied to other basic modules, such as adders [57], com-
pressors [51, 54], and Booth encoding modules [55, 58, 89]. For example, Yin et al. used K-map
modification to design an approximate modified Booth encoding (AMBE) module [58]. With the
modified K-map in Fig. 20, the original expression for the modified Booth encoding algorithm:

𝑃𝑃 𝑗 = (𝑋2𝑖 ⊕ 𝑋2𝑖−1) (𝑋2𝑖+1 ⊕ 𝑌𝑗 ) + (𝑋2𝑖 ⊕ 𝑋2𝑖−1) (𝑋2𝑖+1 ⊕ 𝑋𝑖 ) (𝑋2𝑖+1 ⊕ 𝑌𝑗−1) , (14)

can be simplified to [58]:
𝑃𝑃

′
𝑗 = (𝑋2𝑖 ⊕ 𝑋2𝑖−1) (𝑋2𝑖+1 ⊕ 𝑌𝑗 ) . (15)

In addition to K-map modification, a Boolean expression can also be directly changed to create a
more compact expression, such as the approximate adders SOA in [105] and lower-part-or adder
(LOA) in [101], where the former sets the least significant part of the addition to one and the latter
computes with OR gates.
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(a) (b)

Fig. 19. Comparison on the implementations of the 2×2multiplier module: (a) Accurate logic implementation;
(b) Approximate logic implementation [24].

Fig. 20. K-map modification of AMBE [58]: The circled values in the table are flipped to enable a more
compact representation.

6.2 Gate-Level Pruning
Gate-level pruning provides an alternative to simplify the netlist. It is based on the probabilistic
pruning, which prunes less active gates from a circuit with a limited accuracy loss [90]. Schlachter
et al. proposed to transform the circuit to a graph and prune the nodes with the lowest significance-
activity product (SAP) during synthesis [91]. The term “significance” indicates the importance of
each node/gate, while “activity” refers to the toggling rate of the gate. The significance for the
output nodes is user-defined and then backward propagated to calculate the significance of other
gates. The activity of a node can be extracted from the switching activity interchange format (SAIF)
file, which presents the toggle counts of wires. The digital design flow with gate-level pruning is
shown in Fig. 21.
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Fig. 21. An example of gate-level pruning in a digital design flow [91].

6.3 Evolutionary Circuit Design
Evolutionary algorithms, especially genetic programming, have been utilized to design digital
circuits including approximate designs [96, 97, 117, 118]. Cartesian Genetic Programming (CGP)
that uses graph representations is a flexible form of the genetic programming [119]. Based on CGP,
circuits are represented by node arrays, where a node represents a basic logic function such as AND
and OR. The design process starts with the circuit of an existing conventional multiplier. Then, a
group of circuits are randomly generated from the initial one by applying some operations analogy
to the naturally occurring genetic operations. Each circuit is evaluated with multiple objectives
including error, delay, and power. Based on the evaluation, satisfactory circuits are selected as a new
generation of circuits. When the maximum number of generations is reached or the requirements of
approximate multipliers are satisfied, the iteration is terminated and the connected nodes determine
the multiplication implementation. Hrbacek et al. followed the scheme and applied Non-dominated
Sorting Genetic Algorithm II (NSGA-II) to sort out approximate multipliers among the Pareto
front [97]. Based on the previous work [97], reference [96] constructed a library containing 471
8-bit approximate multipliers.

6.4 Voltage Over-scaling
Voltage scaling is another commonly used method to reduce the power consumption [29]. In general,
the supply voltage needs to be higher than𝑉𝑑𝑑−𝑐𝑟𝑖𝑡 , which is the minimum supply voltage to ensure
the correct timing of the critical path [30, 99, 102, 120]. While voltage over-scaling (VOS) effectively
reduces the power, timing violation induced errors is inevitably introduced [99]. Thus, Lau et al.
provided different energy budgets for each column of the array multiplier in order to minimize
the computation error [102]. Since VOS mainly impacts the critical and near-critical paths, it is
desired to adjust the architecture of each computation module to achieve a shorter critical path
and mitigate the impact of low supply voltage [30, 99]. Liu et al. also proposed an analytical model
to assess the VOS-induced computation errors, which can then be used to select the corresponding
architecture and setup [30].
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7 EVALUATION
In this section, we evaluate the representative approximate multipliers presented in the previous
sections in terms of accuracy and circuit characteristics (including delay, power, and area). Then,
these approximate multipliers are applied in two machine learning applications by replacing the
original exact multipliers with them. The classification accuracy and energy consumption of the
representative designs are presented for comparison.

7.1 Quantitative Comparison Among Multipliers
Given the above discussion on various techniques introduced for approximate multiplier design, it
is necessary to further quantitatively compare their performance under the same condition. Thus,
the following subsections compare the designs under three categories, 𝑖 .𝑒 . fixed-point unsigned,
fixed-point signed, and floating-point multipliers, where 16-bit is selected for fixed-point. It is noted
that all the designs are evaluated with the same setup in the following experiments. In particular, we
use mean relative error distance (MRED) and normalized mean error distance (NMED) as accuracy
metrics. The circuit measurements include delay, power, and area. The approximate multipliers
are implemented by Verilog and then synthesized by Synopsys Design Compiler [121] using the
UMC40 library [122] under either delay-optimized or area-optimized mode. For each multiplier, we
randomly generate 10-million input pairs following a uniform distribution and then run simulations
in Verilator [123].

7.1.1 Fixed-Point Unsigned Multipliers. We have implemented the aforementioned representative
fixed-point unsigned multipliers listed in Table 1. SSM [45] and DRUM [43] are implemented with
the segment width 8. APP is implemented by altering partial products and globally applying the
approximate reduction technique, while APP2 separates the partial product array in a column-
wise manner into three groups, i.e., accurate, approximate, and truncated parts, with 7, 16, and 8
columns, respectively [46]. AW adopts the same partition scheme as APP2 for comparison, but
uses an AND gate-based partial product generation scheme [51]. The approximate multiplier BAM
is denoted as BAM(𝑚,𝑛), where𝑚 and 𝑛 denote the numbers of omitted rows and columns when
carrying out the accumulation [101]. OPACT [95], UDM [24], LM [11], Iterative LM (IterLM) [11]
and Improved LM (ImprLM) [40] are implemented following the original works. Finally, we also
implement the approximate logarithm-based multiplier (ALM) and its iterative variant, IALM, both
using approximate adders in the design. The implementation of ALM uses the approximate adder
SOA [105] that sets the 11 LSBs approximate. We denote it as ALM_SOA. The implementation of
IALM uses three approximate adders, including two SOAs and one LOA [101] configured by setting
the numbers of approximate bits as 5, 11, and 16, respectively. We denote it as IALM_SL.

Figs. 22–24 show the accuracy and the circuit characteristics of multiple unsigned approximate
multipliers when compared to an exact 16-bit multiplier IP obtained from DesignWare [124]. In
Fig. 22, we show the errors of the approximate multipliers, measured by MRED and NMED. Thus,
a lower bar indicates a higher accuracy. Figs. 23 and 24 show the delay/power/area reduction
ratio over the exact design under the delay-optimized and the area-optimized modes, respectively,
where the corresponding exact design is synthesized under the same mode. A higher positive bar
indicates a larger delay, power, or area improvement. From Fig. 23, we can observe that under
the delay-optimized mode, SSM shows better circuit characteristics than DRUM with comparable
accuracy. Due to the approximation in the MSBs, APP has an MRED over 13% and an NMED about
5%, while its variant APP2 shows much improved accuracy with very similar circuit characteristics.
Comparing APP2 and AW, the altered partial products obviously help the efficiency of the reduction
procedure but at the cost of area and power. Among all the BAMmultipliers, BAM(8,16) provides the
best trade-off between accuracy and circuit cost. OPACT, configured with automatically optimized
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compressor allocation and order connection, provides negligible error with moderate hardware
savings. As for logarithm-based multipliers, the iterative schemes including IterLM and IALM_SL
consume toomuch hardware cost for error compensation to achieve the desired accuracy. ALM_SOA
improves the circuit characteristics with the approximate adder at the cost of moderate accuracy
degradation.
As shown in Fig. 24, under the area-optimized mode, the results for most designs, e.g., DRUM,

APP, APP2, UDM, OPACT, LM, ALM_SOA, show an improvement in the area reduction ratio at the
cost of a decreased delay reduction ratio, when compared to the delay-optimized cases. In contrast,
the multipliers BAMs, AW, IterLM, and IALM_SL show improvements in delay reduction at the cost
of smaller area and power reduction ratios. The reason for the decrease in the area reduction ratio
lies in the fact that the reduction ratio is measured against the exact adder synthesized under the
area-optimized mode. In that case, the area of the exact adder also reduces compared to the exact
adder synthesized under the delay-optimized mode. Such a comparison interestingly explores
the sensitivity of the various approximation techniques to the synthesis mode, which has
not been well illustrated in the prior work.

Fig. 22. Error comparison of approximate fixed-point unsigned multipliers.

Fig. 23. Circuit characteristics comparison of delay-optimized approximate multipliers.

Fig. 24. Circuit characteristics comparison of area-optimized approximate multipliers.
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7.1.2 Fixed-Point Signed Multipliers. For fixed-point signed approximate multiplication, Booth
multipliers are widely used by adding an extra stage of Booth encoding to the conventional binary
multiplier. Thus, the aforementioned architecture-level approximation techniques are applicable
to Booth multipliers as well [17, 56, 98, 100, 103, 104]. Given the comprehensive comparison of
the above techniques in Section 7.1.1, here we only focus on the comparison of the approximate
techniques in Booth encoding (see Section 5.4). In particular, we choose R4SA, and its variants
R4ABE1 and R4ABE2, which neglect the signal neg_cin in the last partial product line in comparison
to the exact Booth radix-4 multiplier [55]. Here, the signal neg_cin is the additional logic value 1
added to the LSB when handling a negative number in 2’s complement. R4ABE1 and R4ABE2 utilize
different approximate encoders designed by K-map modification and are configured by setting the
number of approximate LSBs as 15. The prefix of “R4” refers to the radix-4 approximate multiplier,
which is compared to the exact radix-4 multiplier. Similarly, R8ATM is a radix-8 approximate
multiplier by introducing an approximate re-coding adder for the computation of the expression
(𝑌 + 2𝑌 ) and hence, it is compared to the exact radix-8 multiplier [56].
As we can see in Figs. 25–27, R4SA has a small error but distinct improvement in circuit charac-

teristics. The ignorance of neg_cin in the last partial product line reduces the extra hardware cost
for accumulation. Since R4ABE1 and R4ABE2 introduce additional approximation in the encoders
based on R4SA, we mainly focus on the differences among them. Both R4ABE1 and R4ABE2 have a
larger MRED and NMED than R4SA, but they produce mixed results for different error measures
(i.e., MRED and NMED) when compared to each other. When the delay is optimized, R4ABE2
presents a higher improvement in delay and R4ABE1 is superior in power and area. When the area
is optimized, R4ABE1 and R4ABE2 demonstrate improvement in all the three circuit metrics. On
the other hand, R8ATM shows a negligible delay improvement over the exact radix-8 multiplier
under the delay-optimized mode. Under the area-optimized mode, R8ATM is found to have more
balanced improvements in circuit characteristics.

Fig. 25. Error comparison of approximate fixed-point signed multipliers.

Fig. 26. Circuit characteristics comparison of delay-optimized approximate fixed-point signed multipliers.
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Fig. 27. Circuit characteristics comparison of area-optimized approximate fixed-point signed multipliers.

7.1.3 Floating-Point Multipliers. Many floating-point multipliers introduce approximation at the
algorithm level, e.g., through linearization or hybrid approximation. We implement and compare
the representative approximation techniques in this section, i.e., ApproxLP [31], OAM [32], and
RMAC [93]. An exact 32-bit floating-point multiplier IP from DesignWare [124] is used as the base-
line. We denote the multipliers ApproxLP and OAM with the approximation level 𝑛 as ApproxLP(𝑛)
and OAM(𝑛), respectively. A smaller 𝑛 indicates a higher approximation.
As shown in Figs. 28–30, when the approximation level decreases, both ApproxLP and OAM

show a larger error with smaller hardware costs. In general, at the same approximation level,
OAM has a smaller error, area, and delay than ApproxLP, while ApproxLP has a lower power
dissipation. In Fig. 29, unlike ApproxLP showing stable improvements in circuit characteristics
with an increased approximation level, OAM shows sharper changes in circuit characteristics from
level-(2, 3, 4) to level-(0, 1). When considering area-optimized synthesis in Fig. 30, the circuit metrics
show steady improvement with the increased approximation level for both ApproxLP and OAM.
However, ApproxLP shows a negative delay improvement, simply indicating a longer delay than
the exact multiplier design. RMAC maps the mantissa multiplication to the addition between the
two inputs and shows a similar performance as ApproxLP(0) with a larger delay reduction ratio.

Fig. 28. Error comparison of approximate floating-point multipliers.

7.2 Application-Level Comparison
In addition to the generic evaluations, we further study the performance of the approximate
multipliers inmachine learning applications, which are typically consideredmultiplication-intensive
but error-tolerant by its nature. Two representative machine learning applications are selected
for comparison: one is a multi-layer perceptron (MLP) network with one hidden layer on the
MNIST dataset, which is denoted as MNIST (MLP); the other is the convolutional neural network
AlexNet on the CIFAR10 dataset, which is denoted as CIFAR10 (AlexNet). Both neural networks
are pre-trained with accurate floating-point training infrastructure to obtain the trained weights in
double precision. The baselines have been implemented in Verilog using the exact multipliers to
find out the baseline classification accuracy, power, and delay of executing the two tasks, which can
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Fig. 29. Circuit characteristics comparison of delay-optimized approximate floating-point multipliers.

Fig. 30. Circuit characteristics comparison of area-optimized approximate floating-point multipliers.

be measured by Prime-Time PX. During the evaluation, the original exact multipliers are replaced
by the approximate multipliers to evaluate their impact on both classification accuracy and energy
efficiency. The accuracy loss is defined as the classification accuracy change due to the use of the
approximate multipliers, while the energy efficiency is given by the power-delay-product (PDP).
For the evaluations using fixed-point multipliers, post-training quantization has been applied to
obtain the fixed-point weights [125]. For example, the weights and inputs are mapped to the range
of [0, 65535] for 16-bit fixed-point unsigned multipliers, and [−32767, 32767] for 16-bit fixed-point
signed multipliers.

7.2.1 Fixed-Point Unsigned Multipliers. This section studies the performance of various approxi-
mate fixed-point unsigned multipliers. Fig. 31 presents the power reduction ratio when deploying
the approximate multiplier in MNIST (MLP) and CIFAR10 (AlexNet) in comparison to the cases
of using the exact multiplier. Other than a few logarithm-based designs requiring extra power
consumption for error compensation, most designs can achieve quite large power reductions with
the largest power saving above 95%. Thus, the application-level accuracy need to be further consid-
ered to determine the most suitable approximate multipliers for the machine learning applications.
Fig. 32 shows the classification accuracy loss versus the energy efficiency trade-off for various
approximate multipliers on the two applications. The PDP reduction ratio is defined as the relative
PDP change over the original PDP, where a positive PDP reduction ratio indicates improved energy
efficiency and a negative ratio indicates reduced energy efficiency compared to the original design.
On the other hand, the higher accuracy loss indicates a worse classification performance. Thus,
the designs that are closer to the lower right corner are preferred. It can be observed that, while
OPACT, BAM(8,16), SSM, ALM_SOA, AW, APP2, BAM(4,8), DRUM, and LM can achieve good
improvements in energy efficiency with a limited or almost negligible accuracy loss on the MNIST
(MLP), only OPCAT, DRUM, and BAM(4,8) can keep good accuracy with large improvements in
energy efficiency on the CIFRA10 (AlexNet). This simply indicates that the potential approximation
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design space actually changes for different algorithms and demands more in-depth understanding of
the approximation error propagation when executing the algorithm. As discussed earlier, iterative
log-based designs do not perform well in terms of energy efficiency in both cases, which are located
close to the lower left corner of the plots.
Moreover, if we compare Fig. 22 and Fig. 32(a), it is found that, in general, the multipliers with

smaller MREDs tend to cause smaller accuracy losses on MNIST (MLP). Both APP and BAM(12,24)
are located on the upper right corner of Fig. 32(a) due to their large MREDs in the generic evaluation.
However, when the application (or algorithm) becomes more complex, as shown in Fig. 32(b), more
designs even with moderate MREDs in Fig. 22 show very poor performances in terms of accuracy
on CIFAR10 (AlexNet). The difference is partly due to the shallowness of MLP network, where the
approximation errors can hardly get accumulated. In addition, some multipliers, like ALM_SOA
and LM, introduce one-sided errors that can become more difficult to be cancelled out during the
approximation error propagation within the AlexNet. Finally, the multipliers such as BAM(8,16),
AW, and APP2 tend to introduce larger relative errors for small inputs with their aggressive
approximations in the least-significant bits. Thus, when deploying an approximate multiplier,
instead of simply selecting the one based on its MRED, we should choose one with balance
among error bias, approximation aggressiveness, and its fitness to a particular algorithm.

Fig. 31. Power reduction of deploying approximate fixed-point unsigned multipliers in MNIST (MLP) and
CIFAR10 (AlexNet) when compared to the case of using the exact multiplier.

Fig. 32. Classification accuracy loss versus PDP reduction ratio for the delay-optimized approximate 16 × 16
unsigned multipliers on (a) MNIST (MLP) and (b) CIFAR10 (AlexNet).
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7.2.2 Fixed-Point Signed Multipliers. Fig. 33 presents the comparison of power reduction among
different approximate fixed-point signed multipliers, with the baseline design using the exact
signed multipliers. Similar as in Fig. 26, all the designs show power reductions over the exact
multipliers, where R4ABE1 can achieve the most power saving. Fig. 34 compares the trade-off
between classification accuracy loss and PDP reduction ratio for the two applications using different
approximate signed fixed-point multipliers. When comprehensively considering the accuracy
loss and PDP, R4ABE1 and R4ABE2 are superior to the other multipliers. R8ATM has the worst
performance in terms of PDP reduction due to its more complicated encoding.

Fig. 33. Power reduction of deploying approximate fixed-point signed multipliers in MNIST (MLP) and
CIFAR10 (AlexNet) when compared to the case of using the exact multiplier.

Fig. 34. Classification accuracy loss versus PDP reduction ratio for the delay-optimized approximate 16 × 16
signed multipliers on (a) MNIST (MLP) and (b) CIFAR10 (AlexNet).

7.2.3 Floating-point Multipliers. Finally, we investigate the results of designs using approximate
floating-point multipliers. As shown in Fig. 35, all the approximate floating-point multipliers can
achieve dramatic power reduction. Such power saving eventually contributes to the large PDP
reduction in Fig. 36, in which the smallest energy efficiency improvement is more than 65% for
OAM(4) on MNIST (MLP). Due to the error tolerance of the two applications and the large dynamic
range of the floating-point multipliers, all the applications adopting the multipliers in this category
have negligible accuracy losses, where the worst case is CIFAR10 (AlexNet) using RMAC with
an accuracy loss of only 0.024. Moreover, the impact of approximation level is very limited when
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Fig. 35. Power reduction of deploying approximate floating-point multipliers in MNIST (MLP) and CIFAR10
(AlexNet) when compared to the case of using the exact multiplier.

Fig. 36. Classification accuracy loss versus PDP reduction ratio for the delay-optimized approximate floating-
point multipliers on (a) MNIST (MLP) and (b) CIFAR10 (AlexNet).

comparing OAM or ApproxLP with different approximation levels. Thus, compared to the fixed-
point counterparts, the larger dynamic range in approximate floating-point multipliers
actually contributes to a better trade-off of accuracy and energy efficiency on the two
machine learning applications.

8 DISCUSSIONS
Both the reviews and evaluations in the previous sections demonstrate the growing popularity and
maturity of the research on approximate multipliers. However, there are still various challenges to
be overcome, ranging from the design methodology, tools, to applications. This section discusses a
few potential research directions that may shed light on easier and more efficient integration of
approximate multipliers in the digital design flow in the future.

• Top-down design methodology: The demand for approximate multipliers is application
driven to achieve higher energy efficiency at the cost of accuracy. On the other hand, as
shown in the last section, the accuracy of approximate multipliers is not equivalent to the
accuracy at the application level. For example, the metrics like MRED and NMED measuring
the error distance between approximate and exact results do not correlate well with the
application-level quality measures, such as the peak signal-to-noise ratio (PSNR) for image
processing and the average precision (AP) for object detection. Such a mismatch inevitably
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incurs additional design effort or over-design when deploying approximate multipliers. Thus,
for a top-down design methodology, it is necessary to build a link between the application-
level specification and error metrics of approximate multipliers. In addition, when both exact
and approximate arithmetic circuits are used, the data flow needs to be revised to support
such mixed precision [126]. Both processes demand a general design methodology to support
the top-down design flow.

• Design automation methods: Most existing approximate multipliers were designed manu-
ally. However, with the various approximation options at different design levels, the design
space for approximate multipliers is huge. Thus, the design of an optimized approximate
multiplier calls for automation methods that systematically explore the design space. In
this direction, some methods have been proposed for the architecture-level and circuit-level
approximation, such as the automatic synthesis of approximate 4-2 compressors [113] and
optimized allocation of approximate compressors in the compression stage [95]. These auto-
matic synthesis methods are able to obtain better designs than the existing manual designs.
However, given the large and complicated design space of approximate multipliers, there is
still room for the development of more efficient and powerful design automation methods.

• Algorithm-circuit co-optimization: Finally, many applications such as machine learning
are error-tolerant. They can then utilize approximate multipliers to achieve the energy
efficiency improvements without much accuracy loss. However, as shown in the last section,
there are still many unknowns on the interplay between the algorithm and the underlying
approximate multiplier. In particular, it is highly desired to conduct research on designing
approximation-friendly algorithms to fully utilize the benefits of the approximate multipliers.
Such a study calls for an understanding of the approximation theory, error propagation, and
error representation in the algorithms to define the appropriate design space. It is clear that
the design space highly depends on the underlying approximate multiplier circuit. Thus, more
research efforts need to be placed upon the interplay between the approximate algorithm
design space and the characteristics of the underlying approximate multiplier circuit.

9 CONCLUSIONS
Widespread use of multiplication in error-tolerant applications enables significant improvements
of energy efficiency when using approximate multipliers. In this article, we review approximate
multipliers at the algorithm, architecture, and circuit levels. Detailed experimental results are
presented on both generic and machine learning applications to help understand the advantages
and disadvantages of various techniques at different design levels.
At the algorithm level, logarithm-based, linearization-based, and hybrid approximations are

discussed. Mitchell’s logarithmic multiplier shows significant hardware savings but with one-sided
errors. The iterative logarithmic ones reduce the error, but suffer from hardware overhead for error
compensation. The linearization scheme saves substantial energy and area with negligible errors,
and also provides an error distribution with zero mean. The hybrid scheme collaboratively utilize
highly approximated multipliers and more accurate ones, which may increase the circuit area.
Although the reviewed works of the first two techniques focus on fixed-point and floating-point
multiplications, respectively, there are some similarities between them. Both the logarithm-based
and the linearization-based algorithms transform the multiplication to simpler linear computations,
despite their different mechanisms. The logarithm-based method exploits the fact that in the
logarithmic domain, a multiplication becomes a linear addition, while the linearization-based
method directly performs piecewise-linear approximation for the non-linear multiplication. With
the same need for locating the leading one, both of them fit floating-point multipliers well due to
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the normalized mantissa, but it may take extra hardware costs for their utilization in fixed-point
multipliers.

At the architecture level, various approximation strategies are presented and discussed at different
stages of a conventional exact multiplier. Truncating input operands or partial products is a simple
yet effective way to reduce the hardware cost. However, static truncation may cause a large relative
error for small operands, which can affect the solution quality of complex applications. Applying
the altered partial products enables the acceleration of accumulation, while the altering process
increases the circuit area to some extent. Using approximate compressors in the accumulation stage
is another effective way to design approximate multipliers. However, the allocation of approximate
compressors in the accumulation stage and the determination of their connection orders are
complicated problems that deserve further study.

At the circuit level, approximation techniques can be applied with the aforementioned approxi-
mation methods at the architecture and the algorithm levels. Boolean rewriting is often utilized to
simplify the circuit of basic modules adopted in approximated multipliers. Gate-level pruning and
evolutionary circuit design are both objective-oriented, and thus the trade-off between hardware
and accuracy can be adjusted to meet different requirements. Voltage over-scaling can reduce energy
consumption effectively, while the induced errors due to timing violations are often non-negligible,
since the timing violations occur on the critical paths, which typically involve computation over
the MSBs.
Furthermore, the generic and application-level evaluations give two insights: (1) various ap-

proximation techniques show different sensitivity to the synthesis mode, and thus may present
circuit improvements of different degrees under different synthesis modes; (2) the selection of
approximate multipliers for specific applications is concerned with not only the basic error metrics
such as NMED and MRED, but also error bias, approximation aggressiveness, and its fitness to the
algorithm.
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