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ABSTRACT
Probability propagation is an important task used in logic net-

work analysis, which propagates signal probabilities from its pri-

mary inputs to its primary outputs. It has many applications such as

power estimation, reliability analysis, and error analysis for approx-

imate circuits. Existing methods for the task can be divided into

two categories: simulation-based and probability-based methods.

However, most of them suffer from low accuracy or bad scalabil-

ity. In this work, we propose ASPPLN, a method for accelerated

symbolic probability propagation in logic network, which has a

linear complexity with the network size. We first introduce a new

definition in a graph called redundant input and take advantage

of it to simplify the propagation process without losing accuracy.

Then, a technique called symbol limitation is proposed to limit the

complexity of each node’s propagation according to the partial
probability significances of the symbols. The experimental results

showed that compared to the existing methods, ASPPLN improves

the estimation accuracy of switching activity by up to 24.70%, while

it also has a speedup of up to 29×.

KEYWORDS
logic network, symbolic probability propagation, dominator, com-

plexity

1 INTRODUCTION
Probability propagation is an important problem in logic network

analysis. Given the signal probabilities at the primary inputs (PIs)
of a logic network, it derives the signal probability of each node

in the network by a propagation through the network. It is a key

problem in many analysis tasks of digital circuits. For example, the

estimation of the dynamic power of a digital circuit mainly relies

on the computation of the switching activity for each gate in it,

which is the probability of signal toggling at the gate’s output [1];

the reliability analysis of a digital circuit depends on the estimation

of the probability of the correct function at its primary outputs
(POs) [2]; additionally, computation of each node’s probability to be

1 in a logic network is often needed in the design of approximate
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circuits for managing the error [3, 4]. Thus, it is crucial to develop

an efficient and accurate probability propagation method.

Many different methods have been proposed to propagate the

probabilities in a logic network. They can be divided into two major

categories: simulation-based and probability-based methods [1].

Simulation-based methods simulate a logic network with random

bit vectors at PIs, which are then propagated to the POs. Probabili-

ties of each node in the network can be derived from its propagated

bit vector. However, its accuracy heavily depends on the length

of the input bit vectors: when a higher accuracy is in demand,

longer input bit vectors are required and hence, the method is more

time-consuming [5].

On the other hand, the probability-based methods directly prop-

agate the user-specified probabilities at the PIs to the POs through

the logic network, which are more efficient [1, 6, 7]. However, sig-

nal correlations caused by the reconvergent paths in the circuit

are ignored during the direct probability propagation, which is the

key drawback of this method and can often lead to a low accu-

racy [8]. To solve this problem, Krishnaswamy et al. proposed a

non-symbolic method based on the probabilistic transfer matrix to

estimate POs’ error probabilities exactly [9]. More generally, a sym-

bolic method was proposed to propagate the symbolic probability

through each node in [10], which can totally solve the signal corre-

lation issue. Unfortunately, these exact approaches are intractable

for large circuits due to their exponentially growing runtime and

memory requirement. Some other works proposed approximation

techniques for exact symbolic approach at a trade-off between the

runtime and the accuracy [8, 11]. However, most of their runtime is

unpredictable due to their dependency on some special structures

in logic networks. In addition, the approximate technique in [8] is

too aggressive, leading to a great reduction in accuracy.

In this paper, oriented at the symbolic technique for probabil-

ity propagation, we propose ASPPLN, a method for accelerated

symbolic probability propagation in logic network. ASPPLN is

based on a basic operation called elimination, which substitutes

a symbol in a symbolic function by its probability. For accelera-

tion, we first introduce an accuracy-lossless elimination method by

identifying a special set of inputs call redundant inputs. Then, to

further control the complexity of each node’s symoblic probability

propagation, we propose a new metric called partial probability
significance (PPS) for each symbol appearing in the propagation,

and eliminate the symbols with lower PPSs. The complexity of ASP-

PLN is linear to the network size and independent of the network

structure, while the accuracy reduction is small due to the use of

PPS. The experimental results showed that compared to the existing

methods, ASPPLN improves the estimation accuracy of switching

activity by up to 24.70%, while it also has a speedup of up to 29×.

https://doi.org/10.1145/3508352.3549456
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The rest of the paper is organized as follows. Section 2 introduces

the preliminaries and the related works. Section 3 presents our

proposed methodology. Section 4 shows the experimental results.

Finally, Section 5 concludes the paper.

2 PRELIMINARIES AND RELATEDWORKS
This section discusses the preliminaries and the related works.

2.1 Probabilities in Logic Network
In the probability propagation of logic networks, there are two

types of probabilities to be estimated for each node [10].

The first type is the static probability, which is defined as the

probability of a node’s output to be 1. In the propagation of static

probabilities, each node’s static probability can be derived by prop-

agating the given static probability of each PI through the logic

network. Its applications include reliability analysis and error anal-

ysis for approximate computing. Typically, the static probability of

each PI is set as 0.5 and regarded as independent.

The second type is the transition probability, which represents

the probabilities of four transition events at each node, i.e., 0→ 0,

0 → 1, 1 → 0 and 1 → 1, where 𝑥 → 𝑦 represents a transition

from the logic value 𝑥 to the logic value 𝑦. Its typical application is

dynamic power estimation. Note that the transition events 0→ 0

and 1 → 1 are two special cases without the change of values,

but they are needed in the applications of transition probability.

For transition probability propagation, each PI is given with its

four transition probabilities and then the transition probabilities of

each node are derived after propagation. Each PI’s four transition

probabilities are often set independently as four 0.25s.

2.2 Exact Symbolic Probability Propagation
In [12], an exact symbolic propagation method for static proba-

bility was proposed. Each node 𝑛𝑖 is associated with 4 attributes:

(1) The static probability value of the node, denoted as 𝑛𝑖 .Prob.
In the following, we will call it the probability of the node

for short.

(2) The symbol representing the static probability of the node,

denoted as 𝑛𝑖 .Symb. In the following, for simplicity, we will

call it symbol of the node. We will also refer to the symbol

of 𝑛𝑖 as 𝑠𝑖 .

(3) The global symbolic probability function, denoted as𝑛𝑖 .gFunc.
It is a symbolic expression on the static probability of the

node in terms of the symbols of the PIs of the network. In

the following, for simplicity, we will also refer to the global

symbolic probability function of 𝑛𝑖 as 𝐹𝑖 .

(4) The local symbolic probability function, denoted as 𝑛𝑖 .lFunc.
It is a symbolic expression on the static probability of the

node in terms of the symbols of the fanins of the node, which

can be derived directly according to the logic function of the

node. In the following, for simplicity, we will also refer to

the local symbolic probability function of 𝑛𝑖 as 𝑓𝑖 .

The symbolic probability propagation is actually to compute

each node’s global symbolic probability function. The propagation

method relies on an important definition below [8].

Definition 1. Given a symbolic function 𝑓 (𝑠1, · · · , 𝑠𝑚), its super
expression supexp(𝑓 ) is defined as a new symbolic function by
replacing each term 𝑠

𝑝

𝑖
(𝑝 > 1) with 𝑠𝑖 .

Actually, the existence of a power term of a symbol 𝑠𝑖 with

degree more than 1 (i.e., 𝑠
𝑝

𝑖
with 𝑝 > 1) indicates signal correlation,

caused by the reconvergent paths from the node corresponding

to the symbol 𝑠𝑖 [12]. By the supexp operation, the effect of the

signal correlation is eliminated. Note that there are two kinds of

signal correlation, spatial correlation and temporal correlation. Their
difference is that the former does not consider the delay of logic

gates during propagation, while the latter does [8]. In this paper,

we only focus on the spatial correlation, but it is easy to extend our

method to handle the temporal correlation as [8] does.

The key step of the symbolic probability propagation method

in [12] is to propagate the global symbolic probability functions

from the fanins of a node to its output. To achieve this, for a node

𝑛𝑖 with two fanins 𝑛 𝑗 and 𝑛𝑘 , the method first substitutes the global

symbolic probability functions of 𝑛 𝑗 and 𝑛𝑘 into the local symbolic

probability function of 𝑛𝑖 , deriving a new symbolic probability

function called pseudo global symbolic probability function, and
then applies the supexp operation to it to obtain the global symbolic

probability function of 𝑛𝑖 . The step can be expressed as:

𝐹𝑖 = supexp(𝑓𝑖 (𝑠 𝑗 = 𝐹 𝑗 , 𝑠𝑘 = 𝐹𝑘 )) . (1)

Fig. 1 shows an example of propagating the symbolic probability

functions in a logic network, which shows the symbol 𝑠𝑖 , the local

symbolic probability function 𝑓𝑖 , and the global symbolic probability

function 𝐹𝑖 of each node. Note that each internal node’s global

symbolic probability function is derived by Eq. (1). For example, the

pseudo global symbolic probability function of node 6 is 𝑓6 (𝑠2, 𝑠4 =
𝐹4) = 𝑠1𝑠2

2
and its final global symbolic probability function is 𝐹6 =

supexp(𝑠1𝑠2
2
) = 𝑠1𝑠2. After obtaining each node’s global symbolic

probability function 𝐹𝑖 , the probability of each node can be derived

by substituting the probability of each PI into 𝐹𝑖 .
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Figure 1: An example of exact symbolic probability propaga-
tion.

We note that the above exact symbolic static probability propaga-

tionmethod can be easily extended to handle transition probabilities

by allocating each node with four symbols, four local symbolic prob-

ability functions, and four global symbolic probability functions for

representing the four transition events [8].
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2.3 Graph Dominator
A logic network is a directed acyclic graph (DAG) 𝐺 = (𝑉 , 𝐸)

that implements a logic function, where 𝑉 and 𝐸 are the sets of

nodes and edges, respectively.
1
In a DAG, a dominator is defined

as follows [13].

Definition 2. A node 𝑣 ∈ 𝑉 is a dominator of a node 𝑢 ∈ 𝑉
with respect to (w.r.t.) a node set𝑊 ⊆ 𝑉 if 𝑣 is contained in every path
starting from 𝑢 to a node in𝑊 . If𝑊 is the PO set, node 𝑣 is called an
absolute dominator of node 𝑢.

In other words, if a node 𝑣 is an absolute dominator of another

node 𝑢, then all the paths starting from 𝑢 will reconverge at 𝑣 . For

example, node 6 is an absolute dominator of node 1 in Fig. 1.

2.4 Related Works
We describe several previous works tackling the problem of sig-

nal correlation during probability propagation for probability-based

techniques. In [14], it conducts the probability propagation under

the framework of Bayesian network. To tackle the signal correla-

tion, it proposes to split the initial logic network into sub-networks

and then transforms each into a structure called junction tree. Then,
local message passing is applied on each junction tree to finish the

probability propagation. However, this kind of technique is only

limited to handle the spatial signal correlation [15]. In contrast,

symbolic methods can be applied for both temporal and spatial

correlations. The work [8] proposes a technique that only conducts

symbolic probability propagation in a depth-limited sub-network

for each node and approximately simplifies the symbolic expres-

sion according to a special structure called active nodes. However,
the simplification is aggressive, which can lead to a relative large

accuracy reduction for some cases. Similarly, the method in [11]

constructs a sub-network for each node according to a special struc-

ture called sources of the first reconvergence. Then, a simulation is

applied to each sub-network to derive the probability of each node.

However, the complexity of the probability propagation methods

in [8] and [11] depends on the special structures, i.e., active nodes

and sources of the first reconvergence, causing an unpredictable

runtime. Recently, some works take advantage of graph neural

network (GNN) to do probability propagation on logic networks,

with applications in switching activity estimation [16] and static

probability estimation [17], due to the ability of GNN to extract

features from graph-structural data. However, existing GNN-based

methods focus merely on extracting features from the graph topol-

ogy, while they often fail to capture the underlying logic functions,

thus limiting their accuracy in probability propagation tasks.

3 METHODOLOGY
In this section, we elaborate ASPPLN. Same as many previous

works [8, 10], we assume that the input probabilities are indepen-

dent. Unless otherwise specified, we describe ASPPLN for comput-

ing static probability. However, it can be easily adapted to handle

transition probability.

1
We focus on combinational circuit, which is the main part of a sequential circuit and

can be represented as a DAG.

3.1 Overview
The exact symbolic probability propagation method described

in Section 2.2 is intractable for a large network, since the number

of product terms in a global symbolic probability function grows

exponentially with the network size. Instead, ASPPLN conducts a

depth-limited symbolic probability propagation, i.e., computing the

global symbolic probability function of each node in a sub-network,
similar to [8]. A sub-network is built for each node 𝑛 in the input

network by a reverse depth-first search (DFS) from 𝑛 under a depth

limit and then collecting the visited nodes. In the following, we will

simply refer to it as the sub-network of node 𝑛.

However, even though the symbolic probability propagation is

conducted only within the sub-network of a node, the computation

of the global symbolic probability functions of some nodes may still

be time-consumingwhen the number of the inputs of a sub-network

is large. In ASPPLN, we take advantage of a basic operation called

elimination, i.e., substituting the probability values of some inputs

into a global symbolic probability function to simplify it. In other

words, we eliminate some input symbols in the global symbolic

probability function of a node instead of preserving them until the

propagation reaches the output node of a sub-network. However,

eliminating random symbols at random nodes of a sub-network

may lead to a relatively large reduction in the final accuracy of the

computed probability at the output node. Thus, this calls for a study

on a good strategy on symbol elimination. In the following, we

propose two methods for symbol elimination. The first one gives

an elimination strategy that does not introduce any accuracy loss

in a sub-network, which will be described in detail in Section 3.2.

However, only applying this method can still be time-consuming.

Therefore, we propose another method that eliminates the symbols

at the cost of some accuracy loss, which will be described in detail in

Section 3.3. The entire ASPPLN flowwill be presented in Section 3.4.

3.2 Accuracy-lossless Symbol Elimination
Method

This section presents an accuracy-lossless symbol elimination

method. It is applied to the sub-network of each node. Thus, the fol-

lowing discussion is restricted to a sub-network. For a sub-network

of node 𝑛, it has a single output, which is 𝑛. The basic idea is to

find a set of input symbols w.r.t. each node in a sub-network such

that their removal will not lead to an accuracy loss. Note that in the

symbolic probability propagation within a sub-network, the global

symbolic probability function of each node in the sub-network

is only expressed as a function of the input symbols of the sub-

network.

We first give the following definition.

Definition 3. In a sub-network 𝐺 = (𝑉 , 𝐸) of a node 𝑛, a node
𝑣 ∈ 𝑉 is a final absolute dominator of a node 𝑢 ∈ 𝑉 , if 𝑣 is an
absolute dominator of 𝑢 of the sub-network and 𝑣 has only one path
to the output 𝑛 of 𝐺 , that is, there is no reconvergent path starting
from 𝑣 .

For example, consider a sub-network of node 7 shown in Fig. 2(a).

Node 4 is a final absolute dominator of node 1.

The following theorem shows that we can exploit final absolute

dominators to simplify the global symbolic probability function.
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Figure 2: An example of computing redundant inputs: (a) a
sub-network; (b) a table showing all redundant inputs of each
node in the sub-network.

Theorem 1. In a sub-network 𝐺 = (𝑉 , 𝐸) of a node 𝑛, if a node
𝑣 is a final absolute dominator of a node 𝑢, then the corresponding
symbol of node 𝑢 can be eliminated at node 𝑣 ’s global symbolic proba-
bility function without introducing error into the symbolic probability
propagation within the sub-network.

Due to the space limit, we only give a sketch of the proof for the

above theorem. Since 𝑣 is a final absolute dominator of 𝑢, by Defi-

nition 3, 𝑣 is also an absolute dominator of 𝑢. Thus, by Definition 2,

there is no path from node 𝑢 to the output 𝑛 of the sub-network

without containing node 𝑣 . In other words, if 𝑢’s symbol is con-

tained in the computed global symbolic probability function of a

node𝑤 after node 𝑣 , it must be propagated from node 𝑣 . Since no

reconvergent path from node 𝑣 exists, there is only one path con-

necting 𝑣 to𝑤 . Thus, no power term of the form (𝑢.Symb)𝑝 with

𝑝 > 1 is included in the global symbolic probability function of

node𝑤 . Thus, no accuracy reduction can happen after 𝑢’s symbol

is eliminated from 𝑣 ’s global symbolic probability function.

We further define a special input of the sub-network, called

redundant input, for each node.

Definition 4. In a sub-network, a redundant input of a node
𝑣 is an input of the sub-network such that node 𝑣 is a final absolute
dominator of the input.

For example, consider the sub-network shown in Fig. 2(a). Node

1, an input of the sub-network, is a redundant input of node 4.

By Theorem 1 and Definition 4, for any node 𝑣 in a sub-network,

we can eliminate the symbols of all the redundant inputs of node 𝑣

from the global symbolic probability function of 𝑣 , which simplifies

the symbolic propagation without accuracy reduction.

Next, we propose a network flow-based method to obtain all

redundant inputs for each node in a sub-network. It is shown in

Algorithm 1. Its basic idea is to propagate flows from the inputs

of the sub-network to its output and check the amount of flow

gathered at each node to determine all redundant inputs of it.

The input of the algorithm is a sub-network Ntk with a single

output Ntk.Root. Line 3 initializes 3 data members of each node 𝑣 :

(1) 𝑣 .nPath: It represents the number of paths from node 𝑣 to

the output node.

(2) 𝑣 .Flow: It is a map where each key 𝑘 is a source input of
𝑣 , which is defined as an input of Ntk that has a path to

node 𝑣 , and the value associated with the key 𝑘 , denoted as

𝑣 .Flow[𝑘], is the propagated flow from the input 𝑘 to node 𝑣 .

Algorithm 1: The procedure GetRedunInputs for obtaining
all the redundant inputs for each node in a sub-network.

Input: A network Ntk with a single output Ntk.Root.
Output: A new single-output network updated with all redundant

inputs of each node.

1 // initialize

2 foreach node 𝑣 of Ntk do
3 𝑣.nPath← 0; 𝑣.Flow← {}; 𝑣.vDom← [];
4 // derive each node’s number of paths to the output node

5 Ntk.Root.nPath← 1;

6 foreach node 𝑣 of Ntk except Ntk.Root in reverse topological order do
7 foreach fanout node 𝑤 of 𝑣 do
8 𝑣.nPath← w.nPath + 𝑣.nPath;
9 // obtain each node’s redundant inputs 𝑣𝐷𝑜𝑚

10 foreach PI 𝑖 of Ntk do 𝑖 .Flow[𝑖 ] ← 1;

11 foreach node 𝑣 of Ntk in topological order do
12 // update 𝑣’s Flow
13 foreach fanin node fi of 𝑣 do
14 foreach key 𝑘 of fi.Flow do
15 if key 𝑘 is not in 𝑣.Flow then
16 add key 𝑘 into 𝑣.Flow; 𝑣.Flow[𝑘 ] ← 0;

17 else 𝑣.Flow[𝑘 ] ← 𝑣.Flow[𝑘 ] + fi.Flow[𝑘 ]/fi.nFo;
18 // update 𝑣’s redundant inputs

19 foreach key 𝑘 of 𝑣.Flow do
20 if 𝑣.Flow[𝑘 ] = 1 and 𝑣.nPath = 1 then
21 𝑣.vDom.push(𝑘) ;
22 return Ntk;

(3) 𝑣 .vDom: It is a vector storing all redundant inputs of 𝑣 .

Lines 5–8 process each node 𝑣 in a reverse topological order to

update its member nPath by adding up the members nPath of its

fanout nodes. An example of this step is shown in Fig. 2(a), where

the member nPath of each node is shown by the green number

below it. For example, the member nPath of node 5 is obtained by

summing those of nodes 6 and 7, which gives 2.

In the remaining part of the algorithm, it obtains all redundant

inputs vDom of each node by working on the member Flow. Initially,
Line 10 assigns each input of the sub-network with an input flow

of 1. Then, for each node of the sub-network in a topological order,

its member Flow is updated. Lines 13–17 show the update rule for a

node 𝑣 . The rule basically sets the set of keys in 𝑣 .Flow as the union

of the sets of source inputs of all fanin nodes of 𝑣 . For each key

𝑘 in 𝑣 .Flow, the associated value 𝑣 .Flow[𝑘] is given by the sum of

the flows propagated from the input 𝑘 through each fanin fi of 𝑣 .

Note that the flow propagated through a fanin fi to 𝑣 is calculated

as fi.Flow[𝑘] divided by the fanout number of fi, denoted as fi.nFo.
This means that an input flow to a node is evenly distributed over

its fanouts.

Example 1. In Fig. 2(a), the obtained member Flow of each node is
shown above it. For example, node 6 has three source inputs, nodes 1,
2, and 3, which propagate flows of 1, 1, and 0.5 to node 6, respectively.
Among them, the flow from node 2 is calculated as the sum of the flows
from node 2 to node 6 via nodes 2 and 4 divided by their corresponding
numbers of fanouts, i.e., 1/2 + 0.5/1 = 1.

After the member Flow of node 𝑣 is obtained, Line 19 checks all

source inputs of 𝑣 . If a source input propagates a flow of 1 to 𝑣 ,
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then 𝑣 is actually an absolute dominator of the input. The reason

is that the flow of 1 guarantees that all paths starting from the

source input reconverge at node 𝑣 . Furthermore, if node 𝑣 has only

one path to the output of the sub-network, the source input is a

redundant input of node 𝑣 , which is then added into 𝑣 .vDom (see

Line 21). Fig. 2(b) shows the member vDom of each node.

3.3 Accuracy-lossy Symbol Elimination Method
Although the redundant inputs can be exploited to simplify the

symbolic propagation, they may not exist for some nodes due to

the structure constraint of a sub-network. For example, as shown

in Fig. 2(b), node 5 in Fig. 2(a) has no redundant inputs, since it has

more than one path to the output of the sub-network. For those

nodes without redundant inputs, we have no chance to simplify

their global symbolic probability functions, which may lead to a

high complexity of symbolic propagation for later nodes.

To better control the runtime of the computation of each node’s

global symbolic probability function, we first study the root reason

for the high computation complexity. The symbolic propagation at

each node actually consists of some multiplications and additions

over symbolic functions, whose computation complexity is propor-

tional to the number of product terms in the obtained symbolic

function. Since in our symbolic propagation, each node’s global

symbolic probability function has no power terms with degree

more than 1, thus, for a symbolic function with 𝑛 symbols, it has

2
𝑛
product terms in the worst case.

Given the above observation, we propose a basic acceleration

technique called symbol limitation, which is an accuracy-lossy sym-

bol elimination method. Specifically, when computing the global

symbolic probability function of a node, this technique eliminates

some symbols in the global symbolic probability functions of its

fanins before substitution, such that the number of symbols in the

symbolic function after substitution is no more than a given bound.

For better selecting symbols to be eliminated, we propose a metric

called partial probability significance (PPS). It is defined w.r.t. a sym-

bol 𝑠 and a node 𝑣 in a sub-network. It measures the influence to

the probability of the output node of the sub-network when symbol

𝑠 is eliminated from the global symbolic probability functions of

the fanins of node 𝑣 before substitution. In some sense, PPS can

capture the influence to the accuracy of eliminating a symbol in a

sub-network.

To compute the PPS w.r.t. a symbol 𝑠 and a node 𝑣 in a sub-

network, we conduct two rounds of symbolic propagation in the

sub-network. However, instead of preserving all input symbols of

the sub-network at each node, we only preserve symbol 𝑠 during

the propagation and substitute symbols of the other inputs with

their corresponding probabilities. We call this special propagation

a partial symbolic propagation. In the first round, we do a partial

symbolic propagation with regard to symbol 𝑠 , after which the

symbolic function of the sub-network’s output node is expressed

only in symbol 𝑠 . Then, we eliminate symbol 𝑠 from the output

node’s symbolic function and derive a value denoted as PPS1. In the

second round, another partial symbolic propagation is conducted in

the sub-network with regard to symbol 𝑠 , in which we substitute the

probability of symbol 𝑠 into the symbolic functions of the fanins of

node 𝑣 before propagating them to 𝑣 . Similarly, we derive another

value by eliminating symbol 𝑠 from the output node’s symbolic

function, denoted as PPS0. Finally, the PPS w.r.t. symbol 𝑠 and node

𝑣 is calculated as |PPS1 − PPS0 |.

Example 2. Fig. 3(a) (resp. Fig. 3(b)) shows the partial symbolic
propagation for computing PPS1 (resp. PPS0) w.r.t. symbol 𝑠2 and node
6 in the sub-network shown in Fig. 2(a). Table 1 lists the symbol and
local symbolic probability function of each node and the probability
of each input. Initially, the symbolic functions of all input nodes other
than node 2 is set as their corresponding probabilities. Each node’s
symbolic function is derived as an expression of symbol 𝑠2 or a constant
after the partial symbolic propagation, which is shown above each
node. For example, for computing the symbolic function of node 6 in
Fig. 3(b), we first substitute the probability of node 2 into the symbolic
functions of nodes 4, 2, and 5, which gives 0.2 + 0.6 · 0.5 = 0.5, 0.5,
and 0.5, respectively. Then, these values are substituted into node 6’s
local symbolic probability function to derive its symbolic function,
which gives 0.5 · 0.5 · 0.5 = 0.125. Then, PPS1 (resp. PPS0) is derived
by substituting the probability of node 2 into the symbolic function of
node 7 shown in Fig. 3(a) (resp. Fig. 3(b)), which gives 0.5+0.2·0.5 = 0.6

(resp. 0.5625). Finally, the PPS w.r.t. symbol 𝑠2 and node 6 equals
|0.6 − 0.5625| = 0.0375.

1

2

3

4

5

6

7

(a)

1

2

3

4

5

6

7

(b)

Figure 3: An example of the partial symbolic propagation for
computing (a) PPS1 and (b) PPS0 w.r.t. symbol 𝑠2 and node 6.

Table 1: The symbol and local symbolic probability function
of each node, and the probability of each input in the sub-
network of Fig. 2(a).

Node Symbol

Local symbolic

probability function

Probability

1 𝑠1 𝑠1 0.2

2 𝑠2 𝑠2 0.5

3 𝑠3 𝑠3 0.5

4 𝑠4 𝑠1 + 𝑠2 − 2𝑠1𝑠2 –

5 𝑠5 1 − 𝑠3 –

6 𝑠6 𝑠2𝑠4𝑠5 –

7 𝑠7 𝑠5 + 𝑠6 − 𝑠5𝑠6 –

Now, we present the details of the symbol limitation method. We

set the upper bound of the number of symbols kept in the global

symbolic probability function of each node as 𝐾 . For each node

𝑣 , we calculate the PPS w.r.t. node 𝑣 and each symbol existing in

the global symbolic probability functions of the fanins of 𝑣 . Note

that by the method to calculate PPS, we can see that the larger

the PPS is, the more important is its contribution to the accuracy
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of the probability of the output node. Thus, we keep the top 𝐾

symbols with the largest PPS values and eliminate the others from

the global symbolic probability function of each fanin of 𝑣 . Finally,

the updated global symbolic probability function of each fanin is

substituted into the local symbolic probability function of 𝑣 to get

its global symbolic probability function.

3.4 Flow of ASPPLN

Algorithm 2: The flow of ASPPLN.

Input: A logic network Ntk, probabilities of the PIs, the depth limit

𝐿, and the maximum number of symbols 𝐾 .

Output: A logic network updated with each node’s probability.

1 // initialize

2 foreach node 𝑛 of Ntk do initialize 𝑛.Symb and 𝑛.lFunc;
3 foreach PI Pi of Ntk do initialize Pi.Prob;
4 // derive each node’s probability

5 foreach node 𝑛 of Ntk in topological order do
6 SubNtk← DFS(Ntk, 𝑛, 𝐿) ;
7 // initialize SubNtk’s PIs
8 foreach input 𝑖 of SubNtk do 𝑖 .gFunc← 𝑖 .Symb;
9 // initialize non-input nodes of SubNtk

10 foreach non-input node 𝑣 of SubNtk do 𝑣.gFunc← 𝑣.lFunc;
11 GetRedunInputs(SubNtk) ;
12 // do symbolic probability propagation in SubNtk
13 foreach node 𝑣 of SubNtk in topological order do
14 // do symbol limitation

15 SymbLimit(𝑣, 𝐾) ;
16 // eliminate symbols according to 𝑣𝐷𝑜𝑚

17 foreach node 𝑑 of 𝑣.vDom do
18 𝑣.gFunc.Sub(𝑑.Symb, 𝑑 .Prob) ;
19 // compute the output node’s probability

20 foreach symbol symb in SymbSet(𝑛.gFunc) do
21 SrcNode← getNode(symb) ;
22 𝑛.Prob← 𝑛.gFunc.Sub(SrcNode.Symb, SrcNode.Prob) ;
23 Normalize(𝑛.Prob) ;
24 return Ntk;

We show the flow of ASPPLN in Algorithm 2. Its inputs include

a logic network Ntk, the probabilities of the PIs, the depth limit 𝐿

for constructing the sub-network of each node for symbolic propa-

gation, the maximum number 𝐾 of preserved symbols at each node

during symbolic propagation.

Line 2 initializes each node’s symbol and local symbolic prob-

ability function according to its logic function. Line 3 allocates

the given probability to each PI. In Lines 5–23, it computes each

node’s probability in a topological order of Ntk. For each node 𝑛 in

Ntk, a single-output sub-network SubNtk is constructed through a

reverse DFS from node 𝑛 with a depth limit of 𝐿 (Line 6). Then, a

symbolic propagation is performed within the sub-network SubNtk
(Lines 8–18).

Before propagating symbolic functions in SubNtk, Line 8 initial-
izes the global symbolic probability function gFunc of each input

of the sub-network as its symbol and Line 10 initializes the global

symbolic probability function of each remaining node as its local

symbolic probability function lFunc. Then, Line 11 obtains the re-
dundant inputs for each node in SubNtk by Algorithm 1. Next, we

do symbolic propagation for each node 𝑣 of SubNtk in a topological

order. Line 15 does the symbol limitation for node 𝑣 under the up-

per bound 𝐾 as described in Section 3.3. Moreover, the redundant

inputs are exploited to simplify its symbolic function (Lines 17–

18). Note that in this step, as shown in Line 18, we substitute the

symbol of each redundant input 𝑑 in the global symbolic probabil-

ity function of 𝑣 by the probability of 𝑑 , which has already been

derived according to the topological order. After finishing the sym-

bolic propagation within the sub-network SubNtk, we substitute
the probabilities of the remaining symbols into the the global sym-

bolic probability function of the output node 𝑛 of SubNtk to get

the probability of 𝑛 (Lines 20–22). However, in the case of com-

puting transition probabilities, the sum of the four probabilities

may not equal 1 at some nodes. To obtain legal transition probabil-

ities, Line 23 normalizes the four probabilities at each node after

propagating in its sub-network so that their sum equals 1.

Next, we analyze the computation complexity of Algorithm 2.

Assume that the maximum number of fanins in a network is 𝐼 . Thus,

the sub-network constructed at each node has 𝑂 (𝐼𝐿) nodes and
𝑂 (𝐼𝐿) inputs. Clearly, the symbol limitation process at Line 15 dom-

inates the computation complexity of Algorithm 2. Thus, we focus

on its complexity analysis. Due to the upper bound𝐾 of the number

of preserved symbols at each node and the maximum fanin num-

ber 𝐼 , the complexity of the symbolic computation excluding PPS

computation for each node is 𝑂 (2𝐾𝐼 ). Since the PPS computation

preserves only one symbol during the partial symbolic propagation

process, the complexity of the PPS computation w.r.t. one symbol

and one node is proportional to the size of the sub-network, which

is 𝑂 (𝐼𝐿). The complexity of the PPS computation w.r.t. one node
and all the input symbols of the network is𝑂 (𝐼𝐿) ·𝑂 (𝐼𝐿) = 𝑂 (𝐼2𝐿).
Thus, the complexity for a single call of the function SymbLimit is
𝑂 (2𝐾𝐼 + 𝐼2𝐿). Consequently, the complexity of Algorithm 2 can be

derived as 𝑂 ((2𝐾𝐼 + 𝐼2𝐿)𝐼𝐿 |𝑉 |), where |𝑉 | is the number of nodes

in the network. Given that 𝐼 , 𝐿, and 𝐾 are constants, ASPPLN has a

linear complexity in terms of the size of the whole network.

4 EXPERIMENTAL RESULTS
This section presents the experimental results of ASPPLN.

4.1 Experimental Setup
We implement ASPPLN in C++. We use ABC [18] to parse the

input circuits. All the experiments are conducted on an 8-core AMD

5800U processor running at 1.9GHz with 16GB RAM. A set of cir-

cuits from the IWLS benchmark suite [19] and the EPFL benchamrk

suite [20] are used. They are listed in Table 2 with their corre-

sponding numbers of PIs (#PI), numbers of POs (#PO), numbers

of nodes (#Nodes), and numbers of levels (#Levels). We consider

two estimation targets, static probability and switching activity.

We implement a Monte-Carlo (MC) simulation method, accelerated

by the bit-parallel technique, to derive each node’s actual static

probability or switching activity. For each benchmark, at most 2
26

random input patterns are generated for the bit-parallel MC simula-

tion, after which we observe that the static probability or switching

activity values can converge. Two metrics are used to measure the

accuracy of a method for a circuit: maximum error and mean error,

which are the maximum error and the mean error, respectively, of



ASPPLN: Accelerated Symbolic Probability Propagation in Logic Network ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

the method in estimating static probability or switching activity

compared to the MC simulation over all the nodes in the circuit.

Table 2: Benchmarks used in the experiments.

Circuit #PI #PO #Nodes #Levels Circuit #PI #PO #Nodes #Levels

C432 36 7 362 30 i6 138 67 545 5

C499 41 32 597 27 term1 34 10 643 23

C880 60 26 705 41 z4ml 7 4 81 5

C1355 41 32 981 45 Adder 256 129 1020 255

C3540 50 22 1742 67 Max 512 130 2865 287

C7552 207 108 4408 68 Bar 135 128 3336 12

cm151a 12 2 63 14 Sine 24 25 5416 225

cm163a 16 5 84 12 Square 64 128 18486 250

c8 28 18 253 9 Multiplier 128 128 27062 274

dalu 75 16 2625 60 Log2 32 32 32060 444

4.2 Parameter Tuning
In this section, we tune the two parameters 𝐿 and 𝐾 in ASPPLN

to study their influence to the accuracy and runtime of ASPPLN,

such that we can better set their values. The ranges of 𝐿 and 𝐾

are 𝐿 ∈ {3, 4, 5, 6} and 𝐾 = 2𝑘 with 𝑘 ∈ {0, 1, · · · , 7}, respectively.
Consequently, there are 32 parameter combinations in total. We test

all of them and apply ASPPLN to compute the static probabilities

for four circuits, Adder, Max, Bar, and Sine. We assign each PI with

the static probability of 0.5. However, we remark that ASPPLN

can be applied to handle arbitrary input static probabilities. We

show the average of the mean errors of the four circuits under

each parameter combination in Fig. 4. Moreover, the average of

their runtime under each parameter combination is shown in Fig. 5,

where the Time axis is in the logarithmic scale.
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Figure 4: The mean error under different combinations of 𝐿
and 𝐾 .

As shown in Fig. 4, the mean error reduces with the parameter

𝐿, which is expected. Under the same 𝐿, the mean error also shows

a decreasing trend with the parameter 𝐾 . However, for smaller 𝐿s,

further increasing 𝐾 beyond a value does not improve the accuracy.

The reason is that when 𝐾 is large enough, it is larger than the

maximum number of symbols during propagation in each sub-

network. In other words, no symbols will be eliminated under this

value of 𝐾 and thus, no improvement of accuracy happens for

an even larger 𝐾 . In Fig. 5, there is a clear increasing trend of the
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Figure 5: The runtime under different combinations of 𝐿 and
𝐾 .

runtimewith 𝐿. Under the same 𝐿, the runtime reduces with𝐾 when

𝐿 is relatively small. However, when 𝐿 is large, the runtime reduces

with𝐾 initially, but it increases with𝐾 later. The main reason is that

the increase of 𝐾 leads to a longer runtime of symbolic propagation

excluding the PPS computation, but meanwhile, it also reduces the

number of times needed to compute PPS. Such a joint effect may

lead to the overall runtime decrease with 𝐾 . From this experimental

study, we also observe that ASPPLN with 𝐿 = 3 and 𝐾 = 10 can

lead to a short runtime and a relatively high accuracy. Thus, this

combination of 𝐿 and 𝐾 is used in the following experiments.

Table 3: Comparison of ASPPLNwith DeepGate [17] on static
probability estimation.

Circuit

DeepGate ASPPLN

Max Mean Runtime (s) Max Mean Runtime (s)

Adder 0.1104 0.0308 4.59 0.0722 0.0402 0.05
Max 0.2908 0.0371 6.98 0.3496 0.0308 0.17
Bar 0.1058 0.0518 3.07 0.2258 0.0562 0.17
Sine 0.6807 0.1259 9.50 0.5383 0.0506 0.39

Square 0.6366 0.1059 98.76 0.3037 0.043 1.05
Multiplier 0.3315 0.0744 109.30 0.4212 0.0448 1.19

Log2 0.7395 0.1077 139.57 0.7885 0.0518 1.50
Average 0.4136 0.0762 53.11 0.3856 0.0453 0.65

4.3 Performance of ASPPLN in Static
Probability Estimation

In this section, we study the performance of ASPPLN in static

probability estimation. We compare it with a state-of-the-art GNN-

based method, DeepGate [17]. We assign each PI with the static

probability of 0.5. As DeepGate only supports AND-inverter graph

(AIG), we only do comparison over the last seven circuits in Table 2

from the EPFL benchmark suite, whose initial formats are AIG.

Table 3 compres ASPPLN and DeepGate in terms of maximum

error (Max), mean error (Mean), and runtime. The last row of the

table shows the average of the seven circuits. For each circuit, we

highlight the smallest maximum error, mean error, and runtime

in bold. We can see that although the state-of-the-art GNN-based

method, DeepGate, achieves smaller maximum error and mean

error for a few circuits, on average, ASPPLN outperforms DeepGate

on both maximum error and mean error with a reduction of 6.77%
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Table 4: Comparison of ASPPLN with two prior methods and bit-parallel MC simulation on switching activity estimation.

Circuit

[8] [11] ASPPLN Bit-Parallel MC

Max Mean Runtime (s) Max Mean Runtime (s) Max Mean Runtime (s) Runtime (s)

C432 0.434 0.105 436.86 0.238 0.0404 4.58 0.226 0.0456 2.81 3.31

C499 0.0992 0.006 44.77 0.083 0.013 6.56 0.0342 0.0044 3.98 12.72

C880 0.0656 0.0118 1.20 0.1142 0.0202 10.69 0.0656 0.0118 0.83 15.06

C1355 0.1156 0.0376 468.02 0.148 0.0198 11.55 0.142 0.031 2.97 19.38

C3540 N/A N/A N/A 0.2282 0.0258 13.11 0.244 0.0226 12.64 12.95

C7552 N/A N/A N/A 0.46 0.0364 78.69 0.41 0.0338 12.31 90.23

cm151a 0.0898 0.0188 0.05 0.0698 0.0202 0.28 0.0898 0.0186 0.13 0.03
cm163a 0.1636 0.013 0.20 0.1058 0.0224 0.41 0.1332 0.015 0.17 0.03

c8 0.23 0.0226 369.77 0.0872 0.0184 7.70 0.0758 0.0166 1.73 4.00

dalu 0.39 0.0402 2.25 0.424 0.0688 54.58 0.2896 0.042 5.83 103.59

i6 0.1262 0.0124 9.16 0.063 0.0136 3.16 0.0348 0.0056 3.31 24.94

term1 0.328 0.0332 1162.80 0.31 0.0274 4.77 0.258 0.0244 3.73 27.06

z4ml 0.1984 0.0424 1.98 0.1578 0.0462 0.92 0.1952 0.0446 0.92 0.02
Adder 0.04 0.0124 5.23 0.076 0.0152 158.17 0.04 0.0126 2.13 46.20

Max 0.2448 0.0184 28.39 0.248 0.017 511.86 0.2474 0.017 9.22 111.09

Bar 0.1136 0.043 63.83 0.0968 0.0182 162.47 0.1136 0.0414 10.33 107.73

Sine 0.4794 0.0568 565.48 0.5126 0.0608 209.44 0.3922 0.0276 36.50 203.69

Square 0.3274 0.0334 980.81 0.4232 0.051 341.78 0.3038 0.0322 71.70 640.02

Multiplier 0.233 0.0296 1378.52 0.2638 0.0288 743.66 0.2358 0.0288 114.47 2175.05

Log2 0.4978 0.0618 7060.38 0.5416 0.0632 1163.08 0.4998 0.03 161.38 2409.34

Average 0.2320 0.0332 698.87 0.2202 0.0314 188.65 0.1876 0.0250 24.01 327.96

and 40.55%, respectively. Meanwhile, ASPPLN is 82× faster than

DeepGate.

4.4 Performance of ASPPLN in Switching
Activity Estimation

In this section, we study the performance of ASPPLN in switch-

ing activity estimation. We compare it with two existing meth-

ods [8, 11]. For switching probability estimation, which is the key

task of the dynamic power estimation, we derive each node’s four

transition probabilities w.r.t. 0 → 0, 0 → 1, 1 → 0, and 1 → 1

transitions. The switching activity equals the sum of the probabili-

ties for 0→ 1 and 1→ 0 transitions. Each PI is assigned with the

probability of 0.25 for each of the four transition cases, which is

common in dynamic power estimation. However, we remark that

ASPPLN can be applied to handle any input transition probabilities.

For the bit-parallel MC simulation, its random input patterns are

also generated according to the assigned transition probabilities.

In the implementation of the method in [11], the sub-network of

each node is simulated according to each node’s input transition

probabilities.

Table 4 compares ASPPLN with the methods in [8] and [11] in

terms of maximum error (Max), mean error (Mean), and runtime. It

also lists the runtime of the bit-parallel MC simulation. Note that

𝑁 /𝐴s of [8] for C3540 and C7552 is because the runtime is too long,

which is because some nodes in the two circuits have a large number

of fanins, leading to a large number of symbols at these nodes

during the propagation process of [8]. The last row of the table

shows the average of all results over all the circuits except C3540
and C7552. For each circuit, we highlight the smallest maximum

error, mean error, and runtime in bold. We can see that ASPPLN

has a smaller maximum error and mean error than the methods

in [8] and [11]. The reason is that our PPS-based symbol limitation

technique can lead to a smaller accuracy reduction. On average,

ASPPLN has a relative 19.14% and 14.80% reduction in maximum

error over the methods in [8] and [11], respectively. ASPPLN also

has a relative 24.70% and 20.38% reduction in mean error over these

two methods, respectively. Moreover, the comparison in runtime

shows the efficiency of ASPPLN: it is on average 29.1× and 7.9×
faster than the methods in [8] and [11], respectively. It is also 13.7×
faster than the bit-parallel MC simulation method.

5 CONCLUSION
In this work, we propose ASPPLN, a novel approach for accelerat-

ing symbolic probability propagation in a logic network. It consists

of two acceleration techniques: (i) symbolic function simplification

by redundant inputs and (ii) symbol limitation according to PPS.

ASPPLN has a linear complexity with the size of the logic network.

It outperforms several existing works on symbolic probability prop-

agation in terms of runtime, while offering a better accuracy in

probability estimation.
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